The Journal of Light Scattering, Volume. 36, Issue 4, 363(2024)

Micrometer to Submicrometer-sized Single Droplet Optical Tweezer Measurement Techniques

SUN Jiuyi and ZHANG Yunhong
Author Affiliations
  • School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081
  • show less
    References(67)

    [1] [1] Reid J P, Bertram A K, Topping D O, et al. The viscosity of atmospherically relevant organic particles[J]. Nature Communications, 2018, 9(1): 956.

    [2] [2] Pschl U, Shiraiwa M. Multiphase Chemistry at the Atmosphere-Biosphere Interface Influencing Climate and Public Health in the Anthropocene[J]. Chemical Reviews, 2015, 115(10): 4440-4475.

    [3] [3] Zheng G, Su H, Wang S, et al. Multiphase buffer theory explains contrasts in atmospheric aerosol acidity[J]. Science, 2020, 369(6509): 1374-1377.

    [4] [4] Wei H, Vejerano E P, Leng W, et al. Aerosol microdroplets exhibit a stable pH gradient[J]. Proceedings of theNational Academy of Sciences, 2018, 115(28): 7272-7277.

    [5] [5] Reid J P, Mitchem L. Laser probing of single-aerosol droplet dynamics[J]. Annual Review of Physical Chemistry, 2006, 57(1): 245-271.

    [6] [6] Brzobohat O, iler M, Zemnek P. Optical manipulation of airborne particles using flexible dual-beam trap[A]. K. Dholakia, G. C. Spalding. San Diego, California, USA: 2012: 84582C.

    [7] [7] Symes R, Sayer R M, Reid J P. Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects[J]. Physical Chemistry Chemical Physics, 2004, 6(3): 474-487.

    [8] [8] Bilde M, Barsanti K, Booth M, et al. Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures[J]. Chemical Reviews, 2015, 115(10): 4115-4156.

    [9] [9] Cai C, Stewart D J, Reid J P, et al. Organic Component Vapor Pressures and Hygroscopicities of Aqueous Aerosol Measured by Optical Tweezers[J]. The Journal of Physical Chemistry A, 2015, 119(4): 704-718.

    [10] [10] Cai C, Stewart D J, Preston T C, et al. A new approach to determine vapour pressures and hygroscopicities of aqueous aerosols containing semi-volatile organic compounds[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 3162-3172.

    [11] [11] Cao X, Liu Y-X, Huang Q, et al. Single Droplet Tweezer Revealing the Reaction Mechanism of Mn(II)-Catalyzed SO2 Oxidation[J]. Environmental Science & Technology, 2024, 58(11): 5068-5078.

    [12] [12] Konyshev I, Byvalov A. Model systems for optical trapping: the physical basis and biological applications[J]. Biophysical Reviews, 2021, 13(4): 515-529.

    [13] [13] Wills J B, Knox K J, Reid J P. Optical control and characterisation of aerosol[J]. Chemical Physics Letters, 2009, 481(4-6): 153-165.

    [14] [14] Yamanishi J, Ahn H-Y, Yamane H, et al. Optical gradient force on chiral particles[J]. Science Advances, 2022, 8(38): eabq2604.

    [15] [15] Chang P P, Zhang Y H. Optical gradient force on chiral particles[J]. Science Advances, 2020, 32 (04): 295-300.

    [16] [16] Leartprapun N, Iyer R R, Untracht G R, et al. Photonic force optical coherence elastography for three-dimensional mechanical microscopy[J]. Nature Communications, 2018, 9(1): 1-13.

    [17] [17] Ashkin A. Acceleration and Trapping of Particles by Radiation Pressure[J]. Physical Review Letters, 1970, 24(4): 156-159.

    [18] [18] Ashkin A, Dziedzic J M. Optical Levitation by Radiation Pressure[J]. Applied Physics Letters, 1971, 19(8): 283-285.

    [19] [19] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290.

    [22] [22] Zhang S, Xu B, Elsayed M, et al. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation[J]. Chemical Society Reviews, 2022, 51(22): 9203-9242.

    [23] [23] Hong X, Xu B, Li G, et al. Optoelectronically navigated nano-kirigamimicrorotors[J]. Science Advances, 2024, 10(17): eadn7582.

    [24] [24] Lin L, Wang M, Peng X, et al. Opto-thermoelectric nanotweezers[J]. Nature Photonics, 2018, 12(4): 195-201.

    [25] [25] Lin L, Peng X, Wei X, et al. Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells[J]. ACS Nano, 2017, 11(3): 3147-3154.

    [26] [26] Wang K, Schonbrun E, Steinvurzel P, et al. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink[J]. Nature Communications, 2011, 2(1): 469.

    [27] [27] Woerdemann M, Alpmann C, Esseling M, et al. Advanced optical trapping by complex beam shaping[J]. Laser & Photonics Reviews, 2013, 7(6): 839-854.

    [28] [28] Zharov V P, Malinsky T V, Kurten R C. Photoacoustic tweezers with a pulsed laser: theory and experiments[J]. Journal of Physics D: Applied Physics, 2005, 38(15): 2662-2674.

    [29] [29] Zhang Q N, Zhao L J, Chen S H, et al. Hygroscopic property of inorganic salts in atmospheric aerosols measured with physisorption analyzer[J]. Atmospheric Environment, 2021, 247: 118171.

    [30] [30] Li M, Su H, Zheng G, et al. Aerosol pH and Ion Activities of HSO4− and SO42− in Supersaturated Single Droplets[J]. Environmental Science & Technology, 2022, 56(18): 12863-12872.

    [31] [31] Huang Y, Liang Z, Alsoraya M, et al. Light-Gated Manipulation of Micro/Nanoparticles in Electric Fields[J]. Advanced Intelligent Systems, 2020, 2(7): 1900127.

    [32] [32] Huckaby J L, Ray A K, Das B. Determination of size, refractive index, and dispersion of single droplets from wavelength-dependent scattering spectra[J]. Applied Optics, 1994, 33(30): 7112-7125.

    [33] [33] Ashkin A. Acceleration and Trapping of Particles by Radiation Pressure[J]. Physical Review Letters, 1970, 24(4): 156-159.

    [34] [34] Yang D, Zhang J, Zhang P, et al. Optical trapping and manipulating with a transmissive and polarization-insensitive metalens[J]. Nanophotonics, 2024, 13(15): 2781-2789.

    [35] [35] Stilgoe A B, Heckenberg N R, Nieminen T A, et al. Phase-Transition-like Properties of Double-Beam Optical Tweezers[J]. Physical Review Letters, 2011, 107(24): 248101.

    [36] [36] Grigorenko A N, Roberts N W, Dickinson M R, et al. Nanometric optical tweezers based on nanostructured substrates[J]. Nature Photonics, 2008, 2(6): 365-370.

    [37] [37] Logozzo A, Preston T C. Temperature-Controlled Dual-Beam Optical Trap for Single Particle Studies of Organic Aerosol[J]. The Journal of Physical Chemistry A, 2022, 126(1): 109-118.

    [38] [38] Chen Z, Liu P, Wang W, et al. Rapid Sulfate Formation via Uncatalyzed Autoxidation of Sulfur Dioxide in Aerosol Microdroplets[J]. Environ. Sci. Technol., 2022, 56(12): 7631-7646.

    [39] [39] Singer W, Frick M, Bernet S, et al. Self-organized array of regularly spaced microbeads in a fiber-optical trap[J]. Journal of the Optical Society ofAmerica B, 2003, 20(7): 1568-1574.

    [40] [40] Kotru K. Toward a demonstration of a light force accelerometer[D]. Massachusetts Institute of Technology, 2010.

    [41] [41] Rauch P, Jhnke T. Optical Tweezers for Quantitative Force Measurements and Live Cell Experiments[J]. Microscopy Today, 2014, 22(4): 24-31.

    [42] [42] Constable A, Kim J, Mervis J, et al. Demonstration of a fiber-optical light-force trap[J]. Optics Letters, 1993, 18(21): 1867-1869.

    [43] [43] Decombe J-B, Valdivia-Valero F J, Dantelle G, et al. Luminescent nanoparticle trapping with far-field optical fiber-tip tweezers[J]. Nanoscale, 2016, 8(9): 5334-5342.

    [44] [44] Pedaci F, Huang Z, Van Oene M, et al. Excitable particles in an optical torque wrench[J]. Nature Physics, 2011, 7(3): 259-264.

    [45] [45] Xin H, Li Y, Li B. Controllable Patterning of Different Cells Via Optical Assembly of 1D Periodic Cell Structures[J]. Advanced Functional Materials, 2015, 25(19): 2816-2823.

    [46] [46] Li K, Wang R, Shao S, et al. Capture Dynamics of Dielectric Microparticles in Hollow-Core-Fiber-Based Optical Traps[J]. Photonics, 2023, 10(10): 1154.

    [47] [47] Zhang S, Xie S, Li Y, et al. Detection of Gas Pipeline Leakage Using Distributed Optical Fiber Sensors: Multi-Physics Analysis of Leakage-Fiber Coupling Mechanism in Soil Environment[J]. Sensors, 2023, 23(12): 5430.

    [48] [48] Bykov D S, Xie S, Zeltner R, et al. Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre[J]. Light: Science & Applications, 2018, 7(1): 1-7.

    [49] [49] Wang R, Li K, Liu X, et al. Non-Markovian Doppler Velocimetry of Optically Propelled Microparticles in Hollow-Core Photonic Crystal Fiber[J]. ACS Photonics, 2024, 11(4): 1533-1539.

    [50] [50] Xie S, Pennetta R, Russell P St J. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber[J]. Optica, 2016, 3(3): 277-282.

    [51] [51] Pennetta R, Xie S, Russell P St J. Tapered Glass-Fiber Microspike: High- Q Flexural Wave Resonator and Optically Driven Knudsen Pump[J]. Physical Review Letters, 2016, 117(27): 273901.

    [52] [52] Xie S, Sharma A, Romodina M, et al. Tumbling and anomalous alignment of optically levitated anisotropic microparticles in chiral hollow-core photonic crystal fiber[J]. Science Advances, 2021, 7(28): eabf6053.

    [53] [53] Cotterell M I, Mason B J, Carruthers A E, et al. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap[J]. Phys. Chem. Chem. Phys., 2014, 16(5): 2118-2128.

    [54] [54] Cotterell M I, Willoughby R E, Bzdek B R, et al. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles[J]. Atmospheric Chemistry and Physics, 2017, 17(16): 9837-9851.

    [55] [55] Arlt J, Garces-Chavez V, Sibbett W, et al. Optical micromanipulation using a Bessel light beam[J]. Optics Communications, 2001, 197(4-6): 239-245.

    [56] [56] Carruthers A E, Orr-Ewing A J, Reid J P. Optical trapping and sizing of aerosol droplets using counter-propagating Bessel beams[A]. K. Dholakia, G. C. Spalding. San Diego, California: 2010, 7762: 133-142.

    [57] [57] Meresman H, Wills J B, Summers M, et al. Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11333.

    [58] [58] Bohren C F, Huffman D R. Absorption and scattering of light by small particles[M]. John Wiley & Sons, 2008.

    [59] [59] Marag O M, Jones P H, Gucciardi P G, et al. Optical trapping and manipulation of nanostructures[J]. Nature Nanotechnology, 2013, 8(11): 807-819.

    [60] [60] Chan J W, Winhold H, Lane S M, et al. Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(4): 858-863.

    [61] [61] Shiraiwa M, Li Y, Tsimpidi A P, et al. Global distribution of particle phase state in atmospheric secondary organic aerosols[J]. Nature Communications, 2017, 8(1): 15002.

    [62] [62] L X, Zhang Y. Volatility of Ammonium Nitrate in Ultra-viscous Aerosol Droplets by Optical Tweezers[J]. Acta ChimicaSinica, 2020, 78(4): 326-329.

    [63] [63] Radojevi M. On the discrepancy between reported studies of the uncaialysed aqueous oxidation of SO2 by O2[J]. Environmental Technology Letters, 1984, 5(12): 549-566.

    [64] [64] Wang G, Zhang F, Peng J, et al. Particle acidity and sulfate production during severe haze events inChina cannot be reliably inferred by assuming a mixture of inorganic salts[J]. Atmospheric Chemistry and Physics, 2018, 18(14): 10123-10132.

    [65] [65] Laskin A, Laskin J, Nizkorodov S A. Chemistry of Atmospheric Brown Carbon[J]. Chemical Reviews, 2015, 115(10): 4335-4382.

    [66] [66] Wang T, Liu M, Liu M, et al. Sulfate Formation Apportionment during Winter Haze Events in North China[J]. Environmental Science & Technology, 2022, 56(12): 7771-7778.

    [67] [67] Cao X, Chen Z, Liu Y-X, et al. Directly measuring Fe(Ⅲ)-catalyzed SO2 oxidation rate in single optically levitated droplets[J]. Environmental Science: Atmospheres, 2023, 3(2): 298-304.

    [68] [68] Jing X, Chen Z, Cao X, et al. Rapid Sulfate Formation via Mn 2+ -Catalyzed SO 2 Oxidation on the Surface of NaCl Microdroplets[J]. The Journal of Physical Chemistry C, 2023, 127(28): 13632-13638.

    [69] [69] Ma Q, Zhang C, Liu C, et al. A review on the heterogeneous oxidation of SO 2 on solid atmospheric particles: Implications for sulfate formation in haze chemistry[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(21): 1888-1911.

    Tools

    Get Citation

    Copy Citation Text

    SUN Jiuyi, ZHANG Yunhong. Micrometer to Submicrometer-sized Single Droplet Optical Tweezer Measurement Techniques[J]. The Journal of Light Scattering, 2024, 36(4): 363

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 9, 2024

    Accepted: Jan. 21, 2025

    Published Online: Jan. 21, 2025

    The Author Email:

    DOI:10.13883/j.issn1004-5929.202404001

    Topics