NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040012(2023)
Light nuclei production and QCD phase transition in heavy-ion collisions
[1] Fritzsch H, Gell-Mann M, Leutwyler H. Advantages of the color octet gluon picture[J]. Physics Letters B, 47, 365-368(1973).
[2] Collins J C, Perry M J. Superdense matter: neutrons or asymptotically free quarks?[J]. Physical Review Letters, 34, 1353-1356(1975).
[3] Cabibbo N, Parisi G. Exponential hadronic spectrum and quark liberation[J]. Physics Letters B, 59, 67-69(1975).
[4] Freedman B A, McLerran L D. Fermions and gauge vector mesons at finite temperature and density. III. The ground-state energy of a relativistic quark gas[J]. Physical Review D, 16, 1169-1185(1977).
[5] Shuryak E V. Quark-gluon plasma and hadronic production of leptons, photons and psions[J]. Physics Letters B, 78, 150-153(1978).
[6] Kapusta J I. Quantum chromodynamics at high temperature[J]. Nuclear Physics B, 148, 461-498(1979).
[7] Aoki Y, Endrodi G, Fodor Z et al. The order of the quantum chromodynamics transition predicted by the standard model of particle physics[J]. Nature, 443, 675-678(2006).
[8] Aoki Y. The QCD transition temperature: results with physical masses in the continuum limit[J]. Physics Letters B, 643, 46-54(2006).
[9] Aoki Y, Borsanyi S, Durr S et al. The QCD transition temperature: results with physical masses in the continuum limit II[J]. Journal of High Energy Physics, 2009, 088(2009).
[10] Bazavov A, Bhattacharya T, Cheng M et al. Chiral and deconfinement aspects of the QCD transition[J]. Physical Review D, 85, 054503(2012).
[11] Bazavov A, Bhattachary T, DeTar C et al. Equation of state in (2+1)-flavor QCD[J]. Physical Review D, 90, 094503(2014).
[12] Bhattacharya T, Buchoff M I, Christ N H et al. QCD phase transition with chiral quarks and physical quark masses[J]. Physical Review Letters, 113, 082001(2014).
[13] Borsanyi S, Fodor Z, Guenther J N et al. QCD crossover at finite chemical potential from lattice simulations[J]. Physical Review Letters, 125, 052001(2020).
[14] Stephanov M A. QCD phase diagram: an overview[J]. PoS, LAT2006, 024(2006).
[15] Stephanov M A. QCD phase diagram and the critical point[J]. International Journal of Modern Physics A, 20, 4387-4392(2005).
[16] Fukushima K, Sasaki C. The phase diagram of nuclear and quark matter at high baryon density[J]. Progress in Particle and Nuclear Physics, 72, 99-154(2013).
[17] Baym G, Hatsuda T, Kojo T et al. From hadrons to quarks in neutron stars: a review[J]. Reports on Progress in Physics, 81, 056902(2018).
[18] DU Yilun, LI Chengming, SHI Chao et al. Review of QCD phase diagram analysis using effective field theories[J]. Nuclear Techniques, 46, 040009(2023).
[19] ZHU Zhourun, ZHAO Yanqing, HOU Defu. QCD phase structure from holographic models[J]. Nuclear Techniques, 46, 040007(2023).
[20] YIN Shi, TAN Yangyang, FU Weijie. Critical phenomena and functional renormalization group[J]. Nuclear Techniques, 46, 040002(2023).
[21] DING Hengtong, LI Shengtai, LIU Junhong. Progress on QCD properties in strong magnetic fields from lattice QCD[J]. Nuclear Techniques, 46, 040008(2023).
[22] CAO Gaoqing. Extremely strong magnetic field and QCD phase diagram[J]. Nuclear Techniques, 46, 040003(2023).
[23] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).
[24] Bzdak A. Mapping the phases of quantum chromodynamics with beam energy scan[J]. Physics Reports, 853, 1-87(2020).
[25] Abelev B I, Aggarwal M M, Ahammed Z et al. Properties of QCD matter at high baryon density[EB/OL](2022).
[26] Fu W J. QCD at finite temperature and density within the fRG approach: an overview[J]. Communications in Theoretical Physics, 74, 097304(2022).
[27] Pandav A, Mallick D, Mohanty B. Search for the QCD critical point in high energy nuclear collisions[J]. Progress in Particle and Nuclear Physics, 125, 103960(2022).
[28] ZHANG Yu, ZHANG Dingwei, LUO Xiaofeng. Experimental study of the QCD phase diagram in relativistic heavy-ion collisions[J]. Nuclear Techniques, 46, 040001(2023).
[29] YIN Yi. The BEST framework for exploring the QCD phase diagram: progress summary[J]. Nuclear Techniques, 46, 040010(2023).
[30] WU Yuanfang, LI Xiaobing, CHEN Lizhu et al. Several problems in determining the QCD phase boundary by relativistic heavy ion collisions[J]. Nuclear Techniques, 46, 040006(2023).
[31] Asakawa M, Kitazawa M. Fluctuations of conserved charges in relativistic heavy ion collisions: an introduction[J]. Progress in Particle and Nuclear Physics, 90, 299-342(2016).
[32] XU Kun, HUANG Mei. QCD critical end point and baryon number fluctuation[J]. Nuclear Techniques, 46, 040005(2023).
[33] Adam J, Adamczyk L, Adams J R et al. Nonmonotonic energy dependence of net-proton number fluctuations[J]. Physical Review Letters, 126, 092301(2021).
[34] Stephanov M A. Sign of kurtosis near the QCD critical point[J]. Physical Review Letters, 107, 052301(2011).
[35] WU Shanjin, SONG Huichao. Critical dynamical fluctuations near the QCD critical point[J]. Nuclear Techniques, 46, 040004(2023).
[36] Abelev B I, Aggarwal M M, Ahammed Z et al. Observation of an antimatter hypernucleus[J]. Science, 328, 58-62(2010).
[37] Agakishiev H, Aggarwal M M, Ahammed Z et al. Observation of the antimatter helium-4 nucleus[J]. Nature, 473, 353-356(2011).
[38] Adam J, Adamová D, Aggarwal M M et al. Precision measurement of the mass difference between light nuclei and anti-nuclei[J]. Nature Physics, 11, 811-814(2015).
[39] Adam J, Adamczyk L, Adams J R et al. Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton[J]. Nature Physics, 16, 409-412(2020).
[40] Sun K J. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions[J]. Physics Letters B, 774, 103-107(2017).
[41] Sun K J, Chen L W, Ko C M et al. Light nuclei production as a probe of the QCD phase diagram[J]. Physics Letters B, 781, 499-504(2018).
[42] Sun K J, Li F, Ko C M. Effects of QCD critical point on light nuclei production[J]. Physics Letters B, 816, 136258(2021).
[43] Shuryak E, Torres-Rincon J M. Baryon clustering at the critical line and near the hypothetical critical point in heavy-ion collisions[J]. Physical Review C, 100, 024903(2019).
[44] Shuryak E, Torres-Rincon J M. Light-nuclei production and search for the QCD critical point[J]. The European Physical Journal A, 56, 241(2020).
[45] Berdnikov B, Rajagopal K. Slowing out of equilibrium near the QCD critical point[J]. Physical Review D, 61, 105017(2000).
[46] Mishustin I N. Nonequilibrium phase transition in rapidly expanding matter[J]. Physical Review Letters, 82, 4779-4782(1999).
[47] Chomaz P, Colonna M, Randrup J. Nuclear spinodal fragmentation[J]. Physics Reports, 389, 263-440(2004).
[48] Sasaki C, Friman B, Redlich K. Density fluctuations in the presence of spinodal instabilities[J]. Physical Review Letters, 99, 232301(2007).
[49] Steinheimer J, Randrup J. Spinodal amplification of density fluctuations in fluid-dynamical simulations of relativistic nuclear collisions[J]. Physical Review Letters, 109, 212301(2012).
[50] Lacey R A. Indications for a critical end point in the phase diagram for hot and dense nuclear matter[J]. Physical Review Letters, 114, 142301(2015).
[51] Seck F, Galatyuk T, Mukherjee A et al. Dilepton signature of a first-order phase transition[J]. Physical Review C, 106, 014904(2022).
[52] Batyuk P, Blaschke D, Bleicher M et al. Event simulation based on three-fluid hydrodynamics for collisions at energies available at the Dubna Nuclotron-based Ion Collider Facility and at the Facility for Antiproton and Ion Research in Darmstadt[J]. Physical Review C, 94, 044917(2016).
[53] Steinheimer J, Randrup J, Koch V. Non-equilibrium phase transition in relativistic nuclear collisions: importance of the equation of state[J]. Physical Review C, 89, 034901(2014).
[54] Sun K J, Ko C M, Li F et al. Enhanced yield ratio of light nuclei in heavy ion collisions with a first-order chiral phase transition[J]. The European Physical Journal A, 57, 313(2021).
[55] Murase K, Hirano T. Hydrodynamic fluctuations and dissipation in an integrated dynamical model[J]. Nuclear Physics A, 956, 276-279(2016).
[56] Nahrgang M, Bluhm M, Schäfer T et al. Toward the description of fluid dynamical fluctuations in heavy-ion collisions[J]. Acta Physica Polonica B Proceedings Supplement, 10, 687(2017).
[57] Hirano T, Kurita R, Murase K. Hydrodynamic fluctuations of entropy in one-dimensionally expanding system[J]. Nuclear Physics A, 984, 44-67(2019).
[58] Singh M, Shen C, McDonald S et al. Hydrodynamic fluctuations in relativistic heavy-ion collisions[J]. Nuclear Physics A, 982, 319-322(2019).
[59] Akamatsu Y, Mazeliauskas A, Teaney D. Kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion[J]. Physical Review C, 95, 014909(2017).
[60] Stephanov M, Yin Y. Hydrodynamics with parametric slowing down and fluctuations near the critical point[J]. Physical Review D, 98, 036006(2018).
[61] An X, Başar G, Stephanov M et al. Relativistic hydrodynamic fluctuations[J]. Physical Review C, 100, 024910(2019).
[62] Rajagopal K, Ridgway G W, Weller R et al. Understanding the out-of-equilibrium dynamics near a critical point in the QCD phase diagram[J]. Physical Review D, 102, 094025(2020).
[63] Nahrgang M, Leupold S, Herold C et al. Nonequilibrium chiral fluid dynamics including dissipation and noise[J]. Physical Review C, 84, 024912(2011).
[64] Herold C, Nahrgang M, Mishustin I et al. Chiral fluid dynamics with explicit propagation of the Polyakov loop[J]. Physical Review C, 87, 014907(2013).
[65] Herold C, Nahrgang M, Yan Y P et al. Net-baryon number variance and kurtosis within nonequilibrium chiral fluid dynamics[J]. Journal of Physics G: Nuclear and Particle Physics, 41, 115106(2014).
[66] Xu J, Song T, Ko C M et al. Elliptic flow splitting as a probe of the QCD phase structure at finite baryon chemical potential[J]. Physical Review Letters, 112, 012301(2014).
[67] Li F, Ko C M. Spinodal instabilities of baryon-rich quark-gluon plasma in the Polyakov-Nambu-Jona-Lasinio model[J]. Physical Review C, 93, 035205(2016).
[68] Nambu Y, Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. I[J]. Physical Review, 122, 345-358(1961).
[69] Nambu Y, Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. II[J]. Physical Review, 124, 246-254(1961).
[70] Olive K A, Steigman G, Walker T P. Primordial nucleosynthesis: theory and observations[J]. Physics Reports, 333–334, 389-407(2000).
[71] Bennett M J, Pope J K, Beavis D et al. Light nuclei production in relativistic Au+nucleus collisions[J]. Physical Review C, 58, 1155-1164(1998).
[72] Armstrong T A, Barish K N, Batsouli S et al. Proton and deuteron production in Au+Au reactions at 11.6 AGeV/c[J]. Physical Review C, 60, 064901(1999).
[73] Armstrong T A, Barish K N, Batsouli S et al. Antideuteron yield at the AGS and coalescence implications[J]. Physical Review Letters, 85, 2685-2688(2000).
[74] Armstrong T A, Barish K N, Batsouli S et al. Measurements of light nuclei production in 11.5 AGeV/c Au+Pb heavy-ion collisions[J]. Physical Review C, 61, 064908(2000).
[75] Adler C, Ahammed Z, Allgower C et al. Anti-deuteron and anti-He-3 production in sNN=130-GeV Au+Au collisions[J]. Physical Review Letters, 87, 262301(2001).
[76] Adler S S, Afanasiev S, Aidala C et al. Deuteron and antideuteron production in Au+Au collisions at square root of sNN=200 GeV[J]. Physical Review Letters, 94, 122302(2005).
[77] Arsene I, Bearden I G, Beavis D et al. Rapidity dependence of deuteron production in central Au+Aucollisions at sNN=200 GeV[J]. Physical Review C, 83, 044906(2011).
[78] Adam J, Adamova D, Aggarwal M M et al. Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider[J]. Physical Review C, 93, 024917(2016).
[79] Adamczyk L, Adkins J K, Agakishiev G et al. Measurement of elliptic flow of light nuclei at sNN=200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider[J]. Physical Review C, 94, 034908(2016).
[80] Acharya S, Adamová D, Adolfsson J et al. Measurement of deuteron spectra and elliptic flow in Pb-Pb collisions at sNN= 2.76 TeV at the LHC[J]. The European Physical Journal C, 77, 658(2017).
[81] Acharya S, Adam J, Adamová D et al. Production of deuterons, tritons, 3He nuclei, and their antinuclei in pp collisions at s=0.9, 2.76, and 7 TeV[J]. Physical Review C, 97, 024615(2018).
[82] Acharya S, Adamova D, Adhya S P et al. Multiplicity dependence of (anti-)deuteron production in pp collisions at s=7 TeV[J]. Physics Letters B, 794, 50-63(2019).
[83] Adam J, Adamczyk L, Adams J R et al. Beam energy dependence of (anti-)deuteron production in Au+Au collisions at the BNL Relativistic Heavy Ion Collider[J]. Physical Review C, 99, 064905(2019).
[84] Acharya S, Adamova D, Adhya S P et al. Multiplicity dependence of light (anti-)nuclei production in p-Pb collisions at sNN=5.02 TeV[J]. Physics Letters B, 800, 135043(2020).
[85] Acharya S, Adamova D, Adhya S P et al. Measurement of the (anti-)3He elliptic flow in Pb-Pb collisions at sNN=5.02 TeV[J]. Physics Letters B, 805, 135414(2020).
[86] Acharya S, Adamova D, Adhya S P et al. Production of (anti-)3He and (anti-)3H in p-Pb collisions at sNN=5.02 TeV[J]. Physical Review C, 101, 044906(2020).
[87] Acharya S, Adamová D, Adler A et al. (Anti-) deuteron production in pp collisions at s=13 TeV[J]. The European Physical Journal C, 80, 889(2020).
[88] Acharya S, Adamova D, Adhya S P et al. Elliptic and triangular flow of (anti)deuterons in Pb-Pb collisions at sNN=5.02 TeV[J]. Physical Review C, 102, 055203(2020).
[89] Cho S, Furumoto T, Hyodo T et al. Identifying multiquark hadrons from heavy ion collisions[J]. Physical Review Letters, 106, 212001(2011).
[90] Cho Sungtae. Exotic hadrons from heavy ion collisions[J]. Progress in Particle and Nuclear Physics, 95, 279-322(2017).
[91] Everett D, Oliinychenko D, Luzum M et al. Role of bulk viscosity in deuteron production in ultrarelativistic nuclear collisions[J]. Physical Review C, 106, 064901(2022).
[92] Blum K, Ng K C Y, Sato R et al. Cosmic rays, antihelium, and an old navy spotlight[J]. Physical Review D, 96, 103021(2017).
[93] Poulin V, Salati P, Cholis I et al. Where do the AMS-02 antihelium events come from?[J]. Physical Review D, 99, 023016(2019).
[94] Tomlinson J, Gebhardt H S G, Jeong D. Fast calculation of the nonlinear redshift-space galaxy power spectrum including selection bias[J]. Physical Review D, 101, 103528(2020).
[95] Acharya S, Adamová D, Adler A et al. Measurement of the low-energy antideuteron inelastic cross section[J]. Physical Review Letters, 125, 162001(2020).
[96] von Doetinchem P, Perez K, Aramaki T et al. Cosmic-ray antinuclei as messengers of new physics: status and outlook for the new decade[J]. Journal of Cosmology and Astroparticle Physics, 2020, 035(2020).
[97] Saffold N. Cosmic antihelium-3 nuclei sensitivity of the GAPS experiment[J]. Astroparticle Physics, 130, 102580(2021).
[98] Csernai L, Kapusta J I. Entropy and cluster production in nuclear collisions[J]. Physics Reports, 131, 223-318(1986).
[99] Chen J H, Keane D, Ma Y G et al. Antinuclei in heavy-ion collisions[J]. Physics Reports, 760, 1-39(2018).
[100] Ono A. Dynamics of clusters and fragments in heavy-ion collisions[J]. Progress in Particle and Nuclear Physics, 105, 139-179(2019).
[101] Braun-Munzinger P, Dönigus B. Loosely-bound objects produced in nuclear collisions at the LHC[J]. Nuclear Physics A, 987, 144-201(2019).
[102] Andronic A. Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions[J]. Physics Letters B, 697, 203-207(2011).
[103] Andronic A, Braun-Munzinger P, Redlich K et al. Decoding the phase structure of QCD via particle production at high energy[J]. Nature, 561, 321-330(2018).
[104] Butler S T, Pearson C A. Deuterons from high-energy proton bombardment of matter[J]. Physical Review, 129, 836-842(1963).
[105] Kapusta J I. Mechanisms for deuteron production in relativistic nuclear collisions[J]. Physical Review C, 21, 1301-1310(1980).
[106] Scheibl R, Heinz U. Coalescence and flow in ultrarelativistic heavy ion collisions[J]. Physical Review C, 59, 1585-1602(1999).
[107] Chen L W, Ko C M, Li B A. Light clusters production as a probe to nuclear symmetry energy[J]. Physical Review C, 68, 017601(2003).
[108] Chen L W, Ko C M, Li B A. Light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei[J]. Nuclear Physics A, 729, 809-834(2003).
[109] Steinheimer J. Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: thermal production vs. coalescence[J]. Physics Letters B, 714, 85-91(2012).
[110] Sun K J, Ko C M, Dönigus B. Suppression of light nuclei production in collisions of small systems at the Large Hadron Collider[J]. Physics Letters B, 792, 132-137(2019).
[111] Blum K, Takimoto M. Nuclear coalescence from correlation functions[J]. Physical Review C, 99, 044913(2019).
[112] Bellini F, Kalweit A P. Testing production scenarios for (anti-)(hyper-) nuclei and exotica at energies available at the CERN Large Hadron Collider[J]. Physical Review C, 99, 054905(2019).
[113] Danielewicz P. Quantum theory of nonequilibrium processes, I[J]. Annals of Physics, 152, 239-304(1984).
[114] Buss O, Gaitanos T, Gallmeister K et al. Transport-theoretical description of nuclear reactions[J]. Physics Reports, 512, 1-124(2012).
[115] Danielewicz P, Bertsch G F. Production of deuterons and pions in a transport model of energetic heavy-ion reactions[J]. Nuclear Physics A, 533, 712-748(1991).
[116] Danielewicz P, Schuck P. Formulation of particle correlation and cluster production in heavy-ion-induced reactions[J]. Physics Letters B, 274, 268-274(1992).
[117] Acharya S, Adamova D, Adhya S P et al. Hypertriton production in p-Pb collisions at sNN=5.02 TeV[J]. Physical Review Letters, 128, 252003(2022).
[120] Röpke G. Light nuclei quasiparticle energy shifts in hot and dense nuclear matter[J]. Physical Review C, 79, 014002(2009).
[121] Sun K J, Chen L W. Production of antimatter 5, 6Li nuclei in central Au+Au collisions at sNN=200 GeV[J]. Physics Letters B, 751, 272-277(2015).
[122] Sun K J, Chen L W. Analytical coalescence formula for particle production in relativistic heavy-ion collisions[J]. Physical Review C, 95, 044905(2017).
[123] Wu S J, Murase K, Tang S A et al. Examination of background effects on the light-nuclei yield ratio in relativistic heavy-ion collisions[J]. Physical Review C, 106, 034905(2022).
[124] Buballa M. NJL-model analysis of dense quark matter[J]. Physics Reports, 407, 205-376(2005).
[125] 't Hooft G. Computation of the quantum effects due to a four-dimensional pseudoparticle[J]. Physical Review D, 14, 3432-3450(1976).
[126] Masuda K, Hatsuda T, Takatsuka T. Hadron-quark crossover and massive hybrid stars[J]. Progress of Theoretical and Experimental Physics, 2013, 073D01(2013).
[127] Vogl U, Weise W. The Nambu and jona-lasinio model: its implications for hadrons and nuclei[J]. Progress in Particle and Nuclear Physics, 27, 195-272(1991).
[128] Lutz M, Klimt S, Weise W. Meson properties at finite temperature and baryon density[J]. Nuclear Physics A, 542, 521-558(1992).
[129] Bratovic N, Hatsuda T, Weise W. Role of vector interaction and axial anomaly in the PNJL modeling of the QCD phase diagram[J]. Physics Letters B, 719, 131-135(2013).
[130] Liu L M, Zhou W H, Xu J et al. Isospin effect on quark matter instabilities[J]. Physics Letters B, 822, 136694(2021).
[131] Ko C M, Li Q, Wang R. Relativistic Vlasov equation for heavy-ion collisions[J]. Physical Review Letters, 59, 1084-1087(1987).
[132] Ko C M, Li Q. Relativistic Vlasov-Uehling-Uhlenbeck model for heavy-ion collisions[J]. Physical Review C, Nuclear Physics, 37, 2270-2273(1988).
[133] Wong C Y. Dynamics of nuclear fluid. VIII. Time-dependent Hartree-Fock approximation from a classical point of view[J]. Physical Review C, 25, 1460-1475(1982).
[134] Sun K J, Ko C M, Cao S S et al. QCD critical point from the Nambu-Jona-Lasino model with a scalar-vector interaction[J]. Physical Review D, 103, 014006(2021).
[136] Sun K J, Ko C M, Lin Z W. Light nuclei production in a multiphase transport model for relativistic heavy ion collisions[J]. Physical Review C, 103, 064909(2021).
[137] Bleicher M, Zabrodin E, Spieles C et al. Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model[J]. Journal of Physics G: Nuclear and Particle Physics, 25, 1859-1896(1999).
[138] Zhao W B, Sun K J, Ko C M et al. Multiplicity scaling of light nuclei production in relativistic heavy-ion collisions[J]. Physics Letters B, 820, 136571(2021).
[140] Liu H, Zhang D W, He S et al. Light nuclei production in Au+Au collisions at sNN= 5-200 GeV from JAM model[J]. Physics Letters B, 805, 135452(2020).
[141] Zhou W H, Liu H, Li F et al. Elliptic flow splittings in the Polyakov-Nambu-Jona-Lasinio transport model[J]. Physical Review C, 104, 044901(2021).
[142] Ma Y G. New type of double-slit interference experiment at Fermi scale[J]. Nuclear Science and Techniques, 34, 16(2023).
[143] Wang X N. Vector meson spin alignment by the strong force field[J]. Nuclear Science and Techniques, 34, 15(2023).
Get Citation
Copy Citation Text
Kaijia SUN, Liewen CHEN, Ko Che Ming, Feng LI, Jun XU, Zhangbu XU. Light nuclei production and QCD phase transition in heavy-ion collisions[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040012
Category: Research Articles
Received: Jan. 29, 2023
Accepted: --
Published Online: Apr. 27, 2023
The Author Email: CHEN Liewen (lwchen@sjtu.edu.cn)