Photonics Research, Volume. 9, Issue 9, 1660(2021)

On-chip ultrafast pulse generation based on graphene-silicon hybrid waveguides

Meng Deng1, Zichun Liao1, Yankai Chen1, Ningning Yang1, Xu Yan1, Chi Zhang1, Nengli Dai1,2、*, and Yi Wang1,3、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2e-mail: dainl@hust.edu.cn
  • 3e-mail: ywangwnlo@mail.hust.edu.cn
  • show less
    References(44)

    [1] F. Dausinger, F. Lichtner. Femtosecond Technology for Technical and Medical Applications, 96(2004).

    [2] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [3] F. Canbaz, N. Kakenov, C. Kocabas, U. Demrbas, A. Sennaroglu. Generation of sub-20-fs pulses from a graphene mode-locked laser. Opt. Express, 25, 2834-2839(2017).

    [4] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [5] E.-K. Tien, N. S. Yuksek, F. Qian, O. Boyraz. Effect of TPA and FCA interplay on pulse compression in silicon. LEOS IEEE Lasers and Electro-Optics Society Annual Meeting Conference, 888-889(2007).

    [6] E.-K. Tien, N. S. Yuksek, F. Qian, O. Boyraz. Pulse compression and modelocking by using TPA in silicon waveguides. Opt. Express, 15, 6500-6506(2007).

    [7] B. R. Koch, A. W. Fang, O. Cohen, J. E. Bowers. Mode-locked silicon evanescent lasers. Opt. Express, 15, 11225-11233(2007).

    [8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [9] M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J. Rabe, C. Ropers, A. Knorr, T. Elsaesser. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B, 83, 153410(2011).

    [10] S. Marconi, M. Giambra, A. Montanaro, V. Mišeikis, S. Soresi, S. Tirelli, P. Galli, F. Buchali, W. Templ, C. Coletti, V. Sorianello, M. Romagnoli. Photo thermal effect graphene detector featuring 105  Gbit s−1 NRZ and 120  Gbit s−1 PAM4 direct detection. Nat. Commun., 12, 806(2021).

    [11] D. Mao, C. Cheng, F. Wang, Y. Xiao, T. Li, L. Chang, A. Soman, T. Kananen, X. Zhang, M. Krainak, P. Dong, T. Gu. Device architectures for low voltage and ultrafast graphene integrated phase modulators. IEEE J. Sel. Top. Quantum Electron., 27, 3400309(2020).

    [12] B. Jiang, Y. Hou, H. Wang, X. Gan, A. Li, Z. Hao, K. Zhou, L. Zhang, J. Zhao. Few-layer graphene integrated thin tilted fiber grating for all-optical switching. J. Lightwave Technol., 39, 1477-1482(2020).

    [13] M. A. Giambra, V. Mišeikis, S. Pezzini, S. Marconi, A. Montanaro, F. Fabbri, V. Sorianello, A. C. Ferrari, C. Coletti, M. Romagnoli. Wafer-scale integration of graphene-based photonic devices. ACS Nano, 15, 3171-3187(2021).

    [14] C. Zhong, J. Li, H. Lin. Graphene-based all-optical modulators. Front. Optoelectron., 13, 114-128(2020).

    [15] Y. Su, Y. Zhang, C. Qiu, X. Guo, L. Sun. Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications. Adv. Mater. Technol., 5, 1901153(2020).

    [16] Y. Yao, Z. Cheng, J. Dong, X. Zhang. Performance of integrated optical switches based on 2D materials and beyond. Front. Optoelectron., 13, 129-138(2020).

    [17] A. Di Bartolomeo. Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep., 606, 1-58(2016).

    [18] J. Zapata, D. Steinberg, L. A. Saito, R. De Oliveira, A. Cárdenas, E. T. De Souza. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep., 6, 20644(2016).

    [19] V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. Ott, A. Ferrari, M. Romagnoli. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photonics, 12, 40-44(2018).

    [20] Z. Ma, M. H. Tahersima, S. Khan, V. J. Sorger. Two-dimensional material-based mode confinement engineering in electro-optic modulators. IEEE J. Sel. Top. Quantum Electron., 23, 81-88(2016).

    [21] R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, K. Yamada. Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide. Jpn. J. Appl. Phys., 52, 060203(2013).

    [22] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth. Raman spectrum of graphene and graphene layers.. Phys. Rev. Lett., 97, 187401(2006).

    [23] M. Bayle, N. Reckinger, J. R. Huntzinger, A. Felten, A. Bakaraki, P. Landois, J. F. Colomer, L. Henrard, A. A. Zahab, J. L. Sauvajol. Dependence of the Raman spectrum characteristics on the number of layers and stacking orientation in few-layer graphene. Phys. Status Solidi, 252, 2375-2379(2015).

    [24] P. Demongodin, H. El Dirani, J. Lhuillier, R. Crochemore, M. Kemiche, T. Wood, S. Callard, P. Rojo-Romeo, C. Sciancalepore, C. Grillet, C. Monat. Ultrafast saturable absorption dynamics in hybrid graphene/Si3N4 waveguides. APL Photon., 4, 076102(2019).

    [25] E. Garmire. Resonant optical nonlinearities in semiconductors. IEEE J. Sel. Top. Quantum Electron., 6, 1094-1110(2000).

    [26] H. Wang, N. Yang, L. Chang, C. Zhou, S. Li, M. Deng, Z. Li, Q. Liu, C. Zhang, Z. Li, W. Yi. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photon. Res., 8, 468-474(2020).

    [27] C.-C. Lee, J. Miller, T. Schibli. Doping-induced changes in the saturable absorption of monolayer graphene. Appl. Phys. B, 108, 129-135(2012).

    [28] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803-810(2010).

    [29] D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. Ferrari. Sub 200  fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett., 97, 203106(2010).

    [30] J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M. G. Spencer. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett., 92, 042116(2008).

    [31] P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M. G. Spencer. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett., 8, 4248-4251(2008).

    [32] X. Dong, X. Zhou, J. Kang, L. Chen, Z. Lei, C. Zhang, K. K. Wong, X. Zhang. Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling. Opt. Lett., 43, 2118-2121(2018).

    [33] Y. Liu, H. Tsang. Time dependent density of free carriers generated by two photon absorption in silicon waveguides. Appl. Phys. Lett., 90, 211105(2007).

    [34] I. Aldaya, A. Gil-Molina, J. L. Pita, L. H. Gabrielli, H. L. Fragnito, P. Dainese. Nonlinear carrier dynamics in silicon nano-waveguides. Optica, 4, 1219-1227(2017).

    [35] I. Aldaya, A. Gil-Molina, J. L. Pita, L. H. Gabrielli, H. L. Fragnito, P. Dainese. Probing free-carrier recombination in silicon strip nano-waveguides. CLEO: QELS Fundamental Science, FF1E–8(2018).

    [36] K. Seibert, G. Cho, W. Kütt, H. Kurz, D. Reitze, J. Dadap, H. Ahn, M. Downer, A. Malvezzi. Femtosecond carrier dynamics in graphite. Phys. Rev. B, 42, 2842-2851(1990).

    [37] D. Sun, Z.-K. Wu, C. Divin, X. Li, C. Berger, W. A. de Heer, P. N. First, T. B. Norris. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett., 101, 157402(2008).

    [38] J. Shang, Z. Luo, C. Cong, J. Lin, T. Yu, G. G. Gurzadyan. Femtosecond UV-pump/visible-probe measurements of carrier dynamics in stacked graphene films. Appl. Phys. Lett., 97, 163103(2010).

    [39] R. W. Newson, J. Dean, B. Schmidt, H. M. van Driel. Ultrafast carrier kinetics in exfoliated graphene and thin graphite films. Opt. Express, 17, 2326-2333(2009).

    [40] Z. Cheng, H. K. Tsang, X. Wang, K. Xu, J.-B. Xu. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE J. Sel. Top. Quantum Electron., 20, 43-48(2013).

    [41] J. Dadap, N. Panoiu, X. Chen, I.-W. Hsieh, X. Liu, C.-Y. Chou, E. Dulkeith, S. McNab, F. Xia, W. Green, L. Sekaric, Y. Vlasov, R. Osgood. Nonlinear-optical phase modification in dispersion-engineered Si photonic wires. Opt. Express, 16, 1280-1299(2008).

    [42] J. Liao, M. Marko, X. Li, H. Jia, J. Liu, Y. Tan, J. Yang, Y. Zhang, W. Tang, M. Yu, G. Lo, D. Kwong, C. W. Wong. Cross-correlation frequency-resolved optical gating and dynamics of temporal solitons in silicon nanowire waveguides. Opt. Lett., 38, 4401-4404(2013).

    [43] E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, R. M. Osgood. Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express, 14, 5524-5534(2006).

    [44] Z.-W. Li, S.-L. Zhu, G.-Q. Liu, H. Wang, Y. Wang. Theoretical investigation of pulse temporal compression by graphene-silicon hybrid waveguide. IEEE J. Sel. Top. Quantum Electron., 27, 8300109(2019).

    Tools

    Get Citation

    Copy Citation Text

    Meng Deng, Zichun Liao, Yankai Chen, Ningning Yang, Xu Yan, Chi Zhang, Nengli Dai, Yi Wang, "On-chip ultrafast pulse generation based on graphene-silicon hybrid waveguides," Photonics Res. 9, 1660 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Silicon Photonics

    Received: Apr. 16, 2021

    Accepted: Jun. 27, 2021

    Published Online: Aug. 12, 2021

    The Author Email: Nengli Dai (dainl@hust.edu.cn), Yi Wang (ywangwnlo@mail.hust.edu.cn)

    DOI:10.1364/PRJ.428050

    Topics