Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0637002(2025)

Cross-Fusion Transformer-Based Infrared and Visible Image Fusion Method

Haitao Yin* and Changsheng Zhou
Author Affiliations
  • College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu , China
  • show less
    Figures & Tables(14)
    Overall structure of proposed fusion network
    Structure of CFTFB
    Structure of MSFFB
    Fused results by different algorithms on the TNO dataset. (a) Infrared image; (b) visible image; (c) DenseFuse; (d) FusionGAN; (e) GANMcC; (f) U2Fusion; (g) SwinFusion; (h) YDTR; (i) ResCCFusion; (j) DATFuse; (k) TGFuse; (l) proposed algorithm
    Fused results by different algorithms on the INO dataset. (a) Infrared image; (b) visible image; (c) DenseFuse; (d) FusionGAN; (e) GANMcC; (f) U2Fusion; (g) SwinFusion; (h) YDTR; (i) ResCCFusion; (j) DATFuse; (k) TGFuse; (l) proposed algorithm
    Fused results by different algorithms on the RoadScene dataset. (a) Infrared image; (b) visible image; (c) DenseFuse; (d) FusionGAN; (e) GANMcC; (f) U2Fusion; (g) SwinFusion; (h) YDTR; (i) ResCCFusion; (j) DATFuse; (k) TGFuse; (l) proposed algorithm
    Fused results by different algorithms on the MSRS dataset. (a) Infrared image; (b) visible image; (c) DenseFuse; (d) FusionGAN; (e) GANMcC; (f) U2Fusion; (g) SwinFusion; (h) YDTR; (i) ResCCFusion; (j) DATFuse; (k) TGFuse; (l) proposed algorithm
    • Table 1. Average indicators values of different algorithms on the TNO dataset

      View table

      Table 1. Average indicators values of different algorithms on the TNO dataset

      AlgorithmQMIQNICEQMQYQAB/FMIVIFSSIM
      DenseFuse0.40480.80600.56430.71650.37902.69130.63210.5930
      FusionGAN0.35790.80540.48090.51860.23122.33670.42480.3553
      GANMcC0.40810.80610.52310.63070.30662.73590.54770.4920
      U2Fusion0.34490.80500.55670.75350.43082.29030.60700.5829
      SwinFusion0.50400.80950.74270.85030.50193.45950.77970.5658
      YDTR0.44530.80720.57300.77210.41882.95850.66110.5512
      ResCCFusion0.53240.80900.68960.83050.47673.54710.73130.5620
      DATFuse0.56390.80980.74640.91140.52083.71990.78710.5131
      TGFuse0.49080.81020.95130.89560.55333.39780.83620.5500
      Proposed0.71750.81550.96360.93390.55464.80480.91940.5215
    • Table 2. Average indicators values of different algorithms on the INO dataset

      View table

      Table 2. Average indicators values of different algorithms on the INO dataset

      AlgorithmQMIQNICEQMQYQAB/FMIVIFSSIM
      DenseFuse0.45770.80790.37900.70900.39573.24180.54550.4914
      FusionGAN0.37060.80620.34460.55590.27772.60720.33170.3356
      GANMcC0.41300.80710.36140.60070.32602.97240.46980.3913
      U2Fusion0.37790.80630.40090.75810.48012.68530.49150.5045
      SwinFusion0.52730.81160.65350.86650.58413.90120.67090.4854
      YDTR0.49200.80940.46260.77590.50063.50910.59490.4831
      ResCCFusion0.59780.81260.48170.81770.54384.30480.64340.4966
      DATFuse0.57670.81190.50210.86660.55344.13770.58690.4699
      TGFuse0.50680.81120.94670.89450.63443.77600.74790.4940
      Proposed0.70200.81700.73930.92300.60655.12480.73370.5160
    • Table 3. Average indicators values of different algorithms on the RoadScene dataset

      View table

      Table 3. Average indicators values of different algorithms on the RoadScene dataset

      AlgorithmQMIQNICEQMQYQAB/FMIVIFSSIM
      DenseFuse0.37870.80670.39390.64410.34752.64240.47810.4426
      FusionGAN0.38850.80720.37540.51020.26542.81680.36920.2973
      GANMcC0.34560.80630.38270.58780.32232.51880.48550.3854
      U2Fusion0.37260.80690.48570.76310.46672.62380.51750.4882
      SwinFusion0.51520.80920.52760.77270.45623.58760.61880.4514
      YDTR0.41000.80700.43290.70820.41822.85190.55560.4718
      ResCCFusion0.50370.80900.45700.99630.44803.51550.56530.4106
      DATFuse0.57920.81040.52630.84290.48483.93430.58750.4420
      TGFuse0.40270.80700.66350.73600.51182.84180.60230.4428
      Proposed0.71000.81490.70440.86540.50934.93700.76150.4771
    • Table 4. Average indicators values of different algorithms on the MSRS dataset

      View table

      Table 4. Average indicators values of different algorithms on the MSRS dataset

      AlgorithmQMIQNICEQMQYQAB/FMIVIFSSIM
      DenseFuse0.43080.80650.42300.65870.36462.72880.65830.4467
      FusionGAN0.33970.80400.34500.40600.12301.93720.40300.2531
      GANMcC0.41200.80590.38270.57960.25372.60540.58590.3877
      U2Fusion0.35840.80460.41610.56390.37152.12480.49060.3795
      SwinFusion0.67740.81780.92210.91210.65754.56620.91680.4661
      YDTR0.45970.80790.46880.63130.39552.91380.59200.3797
      ResCCFusion0.64350.81450.89340.89440.65494.25710.85070.4649
      DATFuse0.60330.81370.68480.86920.64224.00970.84620.4537
      TGFuse0.53110.81281.34830.88720.67573.65470.93600.4790
      Proposed0.68670.81870.91100.90610.65424.67800.91850.4612
    • Table 5. Ablation experimental results of CFTFB

      View table

      Table 5. Ablation experimental results of CFTFB

      AlgorithmQMIQNICEQMQYQAB/FMIVIFSSIM
      w/o AWM0.70980.81530.92900.93010.55114.77180.91070.5187
      Swap0.69570.81460.89190.94240.53764.63970.89520.5177
      w/o Cross0.68710.81430.88380.94250.53954.57270.89510.5198
      w/o CFTFB0.63300.81230.82650.90970.52234.24670.85000.5122
      Proposed0.71750.81550.96360.93390.55464.80480.91940.5215
    • Table 6. Ablation experimental results of MSFFB

      View table

      Table 6. Ablation experimental results of MSFFB

      AlgorithmQMIQNICEQMQYQAB/FMIVIFSSIM
      w/o CAM0.69820.81490.94740.93130.55144.67560.90550.5162
      w/o MSFFB0.69170.81430.88790.92680.54604.60660.87120.5210
      Proposed0.71750.81550.96360.93390.55464.80480.91940.5215
    • Table 7. Ablation experimental results on number of ECB modules

      View table

      Table 7. Ablation experimental results on number of ECB modules

      Number of ECBQMIQNICEQMQYQAB/FMIVIFSSIM
      10.55160.80970.68090.85270.47063.68870.75610.5084
      20.63140.81250.73990.90650.50674.21230.83410.5204
      30.71750.81550.96360.93390.55464.80480.91940.5215
      40.68550.81440.85460.93530.54194.57980.89830.5210
    Tools

    Get Citation

    Copy Citation Text

    Haitao Yin, Changsheng Zhou. Cross-Fusion Transformer-Based Infrared and Visible Image Fusion Method[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0637002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Apr. 7, 2024

    Accepted: Aug. 1, 2024

    Published Online: Mar. 4, 2025

    The Author Email:

    DOI:10.3788/LOP241049

    CSTR:32186.14.LOP241049

    Topics