Laser & Optoelectronics Progress, Volume. 58, Issue 4, 0410006(2021)

Video Flame Detection Algorithm Based on Improved GMM and Multi-Feature Fusion

Chi Zhang, Qinghao Meng, and Tao Jing*
Author Affiliations
  • Institute of Robotics and Autonomous Systems, Tianjin Key Laboratory of Process Detection and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(12)
    Detection flowchart based on improved GMM and multi-feature fusion
    Frame capture of flame video sequence. (a) Indoor flame; (b) outdoor flame; (c) forest flame
    Original and foreground renderings.(a)(b) Original image; (c)(d) traditional GMM foreground extraction map; (e)(f) improved GMM foreground extraction map
    Feature extraction flowchart
    Original images and LBP histograms. (a)(b) Flame images; (c)(d) fire-like images; (e) histogram extracted from Fig. (a); (f) histogram extracted from Fig. (b); (g) histogram of extracted from Fig. (c); (h) histogram of extracted from Fig. (d)
    Experimental videos. (a) Outdoor flame; (b) indoor flame; (c) forest flame; (d) walking pedestrians; (e) flashing car lights; (f) flashing neon lights
    • Table 1. Comparison of algorithm processing speed unit: ms/frame

      View table

      Table 1. Comparison of algorithm processing speed unit: ms/frame

      AlgorithmFig. 2(a)Fig. 2(b)Fig. 2(c)Average value
      GMM44.547.849.347.2
      Improved GMM33.730.431.631.9
    • Table 2. Comparison of false alarms

      View table

      Table 2. Comparison of false alarms

      AlgorithmFig. 2(a)Fig. 2(b)Fig. 2(c)Average
      GMM1233674521809
      TBGMM426587403472
      IGMM269391137266
    • Table 3. Comparison of missed inspections

      View table

      Table 3. Comparison of missed inspections

      AlgorithmFig. 2(a)Fig. 2(b)Fig. 2(c)Average
      GMM563601731632
      TBGMM411398759523
      IGMM518489501503
    • Table 4. Target similarity comparison

      View table

      Table 4. Target similarity comparison

      Target1234567Average value
      Flame0.70200.77640.69860.73560.72040.80160.79320.7468
      Sunrise0.50750.51080.55960.58450.56550.60190.49120.5459
      Headlight0.23010.24220.24990.30470.38810.19630.29430.2722
      Candle flame0.94570.85360.89830.82030.89150.82940.82310.8660
    • Table 5. Comparison of flame video detection results

      View table

      Table 5. Comparison of flame video detection results

      VideoVideoframeFireframeRef. [6]Ref. [9]Ref. [5]Proposed method
      MFTP /%MFTP /%MFTP /%MFTP /%
      Fig. 6(a)208198692.31990.871090.38493.27
      Fig. 6(b)368350593.75494.02892.93294.57
      Fig. 6(c)2171991485.25191.241584.79688.94
      Average------90.44--92.04--89.37--92.26
    • Table 6. Comparison of non-fire video detection results

      View table

      Table 6. Comparison of non-fire video detection results

      VideoVideoframeFireframeRef. [6]Ref. [9]Ref. [5]Proposed method
      FFFN /%FFFN /%FFFN /%FFFN /%
      Fig. 6(d)148053.3832.0342.7032.03
      Fig. 6(e)187094.81126.42105.3531.60
      Fig. 6(f)2730155.4951.83186.59103.66
      Average------4.56--3.43--4.88--2.43
    Tools

    Get Citation

    Copy Citation Text

    Chi Zhang, Qinghao Meng, Tao Jing. Video Flame Detection Algorithm Based on Improved GMM and Multi-Feature Fusion[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0410006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 3, 2020

    Accepted: Aug. 3, 2020

    Published Online: Feb. 24, 2021

    The Author Email: Jing Tao (jingtao@tju.edu.cn)

    DOI:10.3788/LOP202158.0410006

    Topics