Chinese Journal of Lasers, Volume. 43, Issue 6, 605002(2016)
Properties Study of the Fractional Order High Order Bessel Vortex Beam Using Vector Wave Analysis
[1] [1] Nye J F, Berry M V. Dislocations in wave trains[J]. Proc R Soc London Ser A-Math Phys Eng Sci, 1974, 336(1605): 165-190.
[2] [2] Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305-310.
[3] [3] Bozinovic N, Yue Y, Ren Y, et al.. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.
[4] [4] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.
[5] [5] Tao S, Yuan X C, Lin J, et al.. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726-7731.
[6] [6] Ng J, Lin Z, Chan C T. Theory of optical trapping by an optical vortex beam[J]. Physical Review Letters, 2010, 104(10): 103601.
[7] [7] Crabtree K, Davis J A, Moreno I. Optical processing with vortex-producing lenses[J]. Applied Optics, 2004, 43(6): 1360-1367.
[8] [8] Sharma M K, Joseph J, Senthilkumaran P. Selective edge enhancement using shifted anisotropic vortex filter[J]. Journal of Optics, 2013, 42(1): 1-7.
[9] [9] Pan Y, Jia W, Yu J, et al.. Edge extraction using a time-varying vortex beam in incoherent digital holography[J]. Optics Letters, 2014, 39(14): 4176-4179.
[10] [10] Li X, Tai Y, Nie Z, et al.. Digital speckle correlation method based on phase vortices[J]. Optical Engineering, 2012, 51(7): 077004.
[11] [11] Li X, Tai Y, Zhang L, et al.. Characterization of dynamic random process using optical vortex metrology[J]. Applied Physics B, 2014, 116(4): 901-909.
[12] [12] Liu R, Gu B Y. Generation of the high-order Bessel beams by diffractive phase elements[J]. Optik, 1999, 110(2): 71-76.
[13] [13] Arlt J, Dholakia K. Generation of high-order Bessel beams by use of an axicon[J]. Optics Communications, 2000, 177(1-6): 297-301.
[14] [14] Mitri F G. Three-dimensional vectorial analysis of an electromagnetic non-diffracting high-order Bessel trigonometric beam[J]. Wave Motion, 2012, 49(5): 561-568.
[15] [15] Wu Pinghui, Huang Wenhua. Theoretical analysis of quasi-Bessel beam for laser micromachining[J]. Chinese J Lasers, 2014, 41(s1): s102002.
[16] [16] Yu Wensu, Qin Yali, Ren Hongliang, et al.. Research on ring-like vortex solitons in Bessel lattices[J]. Acta Optica Sinica, 2014, 34(7): 0719001.
[18] [18] Sun Chuan, He Yanlin, Chen Jing, et al.. Bessel beam generated by linear radial gradient-index lens[J]. Chinese J Lasers, 2015, 42(8): 0802002.
[19] [19] Zhou Zhaoxian, Hu Minglie, Zhou Yuzhu, et al.. Broadband spectrum Bessel beams directly output from a photonic crystal fiber[J]. Chinese J Lasers, 2015, 42(3): 0302001.
[20] [20] Berry M V. Optical vortices evolving from helicoidal integer and fractional phase steps[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(2): 259-268.
[21] [21] Leach J, Yao E, Padgett M J. Observation of the vortex structure of a non-integer vortex beam[J]. New Journal of Physics, 2004, 6(1): 71.
[22] [22] Li X, Tai Y, Lv F, et al.. Measuring the fractional topological charge of LG beams by using interference intensity analysis[J]. Optics Communications, 2015, 334: 235-239.
[23] [23] Molchan M A, Doktorov E V, Vlasov R A. Propagation of vector fractional charge Laguerre-Gaussian light beams in the thermally nonlinear moving atmosphere[J]. Optics Letters, 2010, 35(5): 670-672.
[24] [24] Dai H T, Liu Y J, Luo D, et al.. Propagation properties of an optical vortex carried by an Airy beam: Experimental implementation[J]. Optics Letters, 2011, 36(9): 1617-1619.
[25] [25] Petrov N V, Pavlov P V, Malov A N. Numerical simulation of optical vortex propagation and reflection by the methods of scalar diffraction theory[J]. Quantum Electron, 2013, 43(6): 582-587.
[26] [26] Gutiérrez-Vega J C, López-Mariscal C. Nondiffracting vortex beams with continuous orbital angular momentum order dependence[J]. Journal of Optics A: Pure and Applied Optics, 2008, 10(1): 015009.
[27] [27] López-Mariscal C, Burnham D, Rudd D, et al.. Phase dynamics of continuous topological upconversion in vortex beams[J]. Optics Express, 2008, 16(15): 11411-11422.
[28] [28] Mitri F G. Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α: Erratum[J]. Optics Letters, 2013, 38(5): 615-615.
[29] [29] Mitri F G. High-order Bessel nonvortex beam of fractional type α[J]. Physical Review A, 2012, 85(2): 025801.
[30] [30] Lax M, Louisell W H, McKnight W B. From Maxwell to paraxial wave optics[J]. Physical Review A, 1975, 11(4): 1365-1370.
[31] [31] Davis L W. Theory of electromagnetic beams[J]. Physical Review A, 1979, 19(3): 1177-1179.
[32] [32] Pattanayak D N, Agrawal G P. Representation of vector electromagnetic beams[J]. Physical Review A, 1980, 22(3): 1159-1164.
[33] [33] Jesus-Silva A J, Fonseca E J S, Hickmann J M. Study of the birth of a vortex at Fraunhofer zone[J]. Optics Letters, 2012, 37(21): 4552-4554.
[34] [34] Mitri F G. Three-dimensional vectorial analysis of an electromagnetic non-diffracting high-order Bessel trigonometric beam[J]. Wave Motion, 2012, 49(5): 561-568.
Get Citation
Copy Citation Text
Li Xinzhong, Tai Yuping, Li Hehe, Wang Jingge, Nie Zhaogang, Tang Jie, Wang Hui, Yin Chuanlei. Properties Study of the Fractional Order High Order Bessel Vortex Beam Using Vector Wave Analysis[J]. Chinese Journal of Lasers, 2016, 43(6): 605002
Category: beam transmission and control
Received: Jan. 5, 2016
Accepted: --
Published Online: Jun. 6, 2016
The Author Email: Xinzhong Li (xzli@haust.edu.cn)