Acta Optica Sinica, Volume. 40, Issue 10, 1010001(2020)
Improved U-Net Segmentation Algorithm for the Retinal Blood Vessel Images
Fig. 4. Schematic diagram of hole convolution under different expansion rates r. (a) r=1;(b) r=2;(c) r=4
Fig. 7. DRIVE dataset (from left to right are the original color fundus image, two expert manual segmentation images, and binary mask image)
Fig. 8. Retina image preprocessing. (a) Original image of the DRIVE dataset; (b) pre-processed image
Fig. 9. Local blocky information map of retinal blood vessels. (a) Block information of the DRIVE dataset; (b) standard block information
Fig. 10. Segmentation of experimental results. (a) Original image preprocessing map; (b) image segmentation standard map; (c) experimental result segmentation map
Fig. 11. Partial blood vessel region segmentation diagram. (a) Original color fundus retinal images; (b) locally fundus retinal images; (c) local standard retinal segmentation images; (d) local retinal segmentation result images
|
|
Get Citation
Copy Citation Text
Daxiang Li, Zhen Zhang. Improved U-Net Segmentation Algorithm for the Retinal Blood Vessel Images[J]. Acta Optica Sinica, 2020, 40(10): 1010001
Category: Image Processing
Received: Jan. 8, 2020
Accepted: Feb. 26, 2020
Published Online: Apr. 28, 2020
The Author Email: Zhang Zhen (zhang408356262@163.com)