Acta Photonica Sinica, Volume. 51, Issue 11, 1101001(2022)
Application of Deep Learning in Underwater Imaging(Invited)
[1] LIU Cigui. Resolutely shouldering the historic mission of building a maritime power[J]. Qiushi, 15, 20-22(2016).
[2] WANG Jiejun, LIANG Lei, LI Shu et al. Correction and implement of polarization-difference imaging model for underwater target[J]. Acta Optica Sinica, 39, 160-166(2019).
[3] SMITH R C, BAKER K S. Optical properties of the clearest natural waters (200-800 nm)[J]. Applied Optics, 20, 177-184(1981).
[4] WEI Yi, LIU Fei, YANG Kui et al. Passive underwater polarization imaging detection method in neritic area[J]. Acta Physica Sinica, 67, 115-124(2018).
[5] MCGLAMERY B L. A computer model for underwater camera systems[C](1980).
[6] HU Yan. Research on underwater image restoration[D](2019).
[7] XU K, BA J L, KIROS R et al. Show, attend and tell: neural image caption generation with visual attention[C], 2048-2057(2015).
[8] HU J, SHEN L, ALBANIE S et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023(2020).
[9] JADERBERG M, SIMONYAN K, ZISSERMAN A et al. Spatial transformer networks[C], 2017-2025(2015).
[10] WANG Cong. Research on underwater image enhancement algorithm[D](2021).
[11] WANG Xinwei, SUN Liang, WANG Minmin et al. Deblurring methods for underwater 2D and 3D range-gated imaging[J]. Infrared and Laser Engineering, 49, 27-37(2020).
[12] WANG Yan. Research on underwater image enhancement methods based on image formation model[D](2019).
[13] HUANG Dongmei, WANG Yan, SONG Wei et al. Underwater image enhancement method using adaptive histogram stretching in different color models[J]. Journal of Image and Graphics, 23, 640-651(2018).
[14] WANG Y, SONG W, FORTINO G et al. An experimental-based review of image enhancement and image restoration methods for underwater imaging[J]. IEEE Access, 7, 140233-140251(2019).
[15] KASHIF I, SALAM R A, AZAM O et al. Underwater image enhancement using an integrated colour model[J]. Iaeng International Journal of Computer Science, 34, 239-244(2007).
[16] LAN Leibo. Research on color image enhancement in underwater scattering media[D](2015).
[17] VASAMSETTI S, MITTAL N, NEELAPU B C et al. Wavelet based perspective on variational enhancement technique for underwater imagery[J]. Ocean Engineering, 141, 88-100(2017).
[18] WANG Wen. Research on underwater image enhancement based on multi-scale fusion[D](2019).
[19] ANCUTI C O, ANCUTI C, VLEESCHOUWER C D et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 27, 379-393(2018).
[20] ANCUTI C, ANCUTI C O, HABER T et al. Enhancing underwater images and videos by fusion[C], 81-88(2012).
[21] JOSHI K R, KAMATHE R S. Quantification of retinex in enhancement of weather degraded images[C], 1229-1233(2008).
[22] ZHANG Mingming. Research on underwaterimagecorrectiontechnology[D](2020).
[23] ZHANG Caizhen, KANG Binlong, LI Ying et al. Underwater image enhancement based on differential channel gain and improved retinex[J]. Laser & Optoelectronics Progress, 58, 156-163(2021).
[24] PEREZ J, ATTANASIO A C, NECHYPORENKO N et al. A deep learning approach for underwater image enhancement[C], 183-192(2017).
[25] WANG Y, ZHANG J, CAO Y et al. A deep CNN method for underwater image enhancement[C], 1382-1386(2017).
[26] ANWAR S, LI C, PORIKLI F. Deep underwater image enhancement[J]. arXiv e-prints(2018).
[27] CAO X, RONG S, LIU Y et al. NUICNet: Non-uniform illumination correction for underwater image using fully convolutional network[J]. IEEE Access, 8, 109989-110002(2020).
[28] DUDHANE A, HAMBARDE P, PATIL P et al. Deep Underwater image restoration and beyond[J]. IEEE Signal Processing Letters, 27, 675-679(2020).
[29] WANG Y Q, YU X N, AN D et al. Underwater image enhancement and marine snow removal for fishery based on integrated dual-channel neural network[J]. Computers and Electronics in Agriculture, 186, 106182(2021).
[30] HUANG Y F, LIU M Y, YUAN F. Color correction and restoration based on multi-scale recursive network for underwater optical image[J]. Signal Processing: Image Communication, 93, 116174(2021).
[31] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M et al. Generative adversarial nets[C], 2672-2680(2014).
[32] LI J, SKINNER K A, EUSTICE R M et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 3, 387-394(2018).
[33] ZHU J, PARK T, ISOLA P et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C], 2242-2251(2017).
[34] FABBRI C, JAHIDUL ISLAM M, SATTAR J. Enhancing underwater imagery using generative adversarial networks[J]. IEEE International Conference on Robotics and Automation, 7159-7165(2018).
[35] LI N, ZHENG Z, ZHANG S et al. The Synthesis of unpaired underwater images using a multistyle generative adversarial network[J]. IEEE Access, 6, 54241-54257(2019).
[36] ZONG X, CHEN Z, WANG D. Local-CycleGAN: a general end-to-end network for visual enhancement in complex deep-water environment[J]. Applied Intelligence, 51, 1947-1958(2021).
[37] LI C Y, CAVALLARO A. Cast-Gan: learning to remove color cast from underwater images[C], 1083-1087(2020).
[38] LI C, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 98, 107038(2020).
[39] YIN X, LIU X, LIU H. FMSNet: Underwater image restoration by learning from a synthesized dataset[C], 421-432(2021).
[40] ISLAM M J, XIA Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 5, 3227-3234(2020).
[41] WANG Dexing, WANG Yue, YUAN Hongchun. Underwater image enhancement based on Inception-Residual and generative adversarial network[J]. Chinese Journal of Liquid Crystals and Displays, 36, 1474-1485(2021).
[42] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2341-2353(2011).
[43] CHIANG J Y, CHEN Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 21, 1756-1769(2012).
[44] ZHAO X, JIN T, QU S. Deriving inherent optical properties from background color and underwater image enhancement[J]. Ocean Engineering, 94, 163-172(2015).
[45] DREWS J P, NASCIMENTO E, MORAES F et al. Transmission estimation in underwater single images[J]. IEEE International Conference on Computer Vision Workshops, 825-830(2013).
[46] LU H, LI Y, ZHANG L et al. Contrast enhancement for images in turbid water[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 32, 886-893(2015).
[47] ZHENG L, DING X Y, WANG Y F et al. GUDCP: generalization of underwater dark channel prior for underwater image restoration[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1-5(2021).
[48] GALDRAN A, PARDO D, PICÓNA et al. Automatic red-channel underwater image restoration[J]. Journal of Visual Communication & Image Representation, 26, 132-145(2015).
[49] CARLEVARIS B N, MOHAN A, EUSTICE R M. Initial results in underwater single image dehazing[C], 1-8(2010).
[50] ZHAO X, JIN T, QU S. Deriving inherent optical properties from background color and underwater image enhancement[J]. Ocean Engineering, 94, 163-172(2015).
[51] PENG Y T, ZHAO X, COSMAN P C. Single underwater image enhancement using depth estimation based on blurriness[J]. IEEE International Conference on Image Processing, 4952-4956(2015).
[52] PENG Y T, COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Trans Image Process, 26, 1579-1594(2017).
[53] WANG Y, CAO J, RIZVI S et al. Underwater image restoration based on adaptive color compensation and dual transmission estimation[J]. IEEE Access, 8, 207834-207843(2020).
[54] WANG K, HU Y, CHEN J et al. Underwater image restoration based on a parallel convolutional neural network[J]. Remote Sensing, 11, 1591(2019).
[55] DING X, WANG Y, ZHANG J et al. Underwater image dehaze using scene depth estimation with adaptive color correction[C], 1-5(2017).
[56] CAO K, PENG Y T, COSMAN P C. Underwater image restoration using deep networks to estimate background light and scene depth[J]. IEEE Southwest Symposium on Image Analysis and Interpretation, 1-4(2018).
[57] PAN P W, YUAN F, CHENG E. De-scattering and edge-enhancement algorithms for underwater image restoration[J]. Frontiers of Information Technology & Electronic Engineering, 20, 862-871(2019).
[58] LIN Y F, SHEN L Q, WANG Z Y et al. Attenuation coefficient guided two-stage network for underwater image restoration[J]. IEEE Signal Processing Letters, 199-203(2021).
[59] BARBOSA W V, AMARAL H, ROCHA T L et al. Visual-quality-driven learning for underwater vision enhancement[J]. IEEE International Conference on Image Processing, 3933-3937(2018).
[60] UEDA T, YAMADA K, TANAKA Y. Underwater image synthesis from rgb-d images and its application to deep underwater image restoration[J]. IEEE International Conference on Image Processing, 2115-2119(2019).
[61] HAN Pingli. Underwater targets detection based on polarization imaging[D](2018).
[62] LIU Fei, SUN Shaojie, HAN Pingli et al. Development of underwater polarization imaging technology[J]. Laser & Optoelectronics Progress, 58, 9-26(2021).
[63] GUAN Jinge, ZHU Jingping, TIAN Heng et al. Real-time polarization difference underwater imaging based on Stokes vector[J]. Acta Physica Sinica, 64, 141-147(2015).
[64] WANG J, WAN M, GU G et al. Periodic integration-based polarization differential imaging for underwater image restoration[J]. Optics and Lasers in Engineering, 149, 106785(2022).
[65] SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 30, 570-587(2005).
[66] HUANG B, LIU T, HU H et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 24, 9826-9838(2016).
[67] GU Y, CARRIZO C, GILERSON A A et al. Polarimetric imaging and retrieval of target polarization characteristics in underwater environment[J]. Applied Optics, 55, 626-637(2016).
[68] TREIBITZ T, SCHECHNER Y Y. Active polarization descattering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 385-399(2009).
[69] FENG Fei, WU Guojun, WU Yafeng et al. Algorithm for underwater polarization imaging based on global estimation[J]. Acta Optica Sinica, 40, 75-83(2020).
[70] WEI Y, HAN P L, LIU F et al. Polarization descattering imaging: a solution for nonuniform polarization characteristics of a target surface[J]. Chinese Optics Letters, 19, 111101(2021).
[71] LI X, LI H, LIN Y et al. Learning-based denoising for polarimetric images[J]. Optics Express, 28, 16309-16321(2020).
[72] HU H, ZHANG Y, LIX et al. Polarimetric underwater image recovery via deep learning[J]. Optics and Lasers in Engineering, 133, 106152(2020).
[73] ZHANG R, GUI X, CHENG H et al. Underwater image recovery utilizing polarimetric imaging based on neural networks[J]. Applied Optics, 60, 8419-8425(2021).
[74] ZENG Wenbing. Research on underwater long-distance ghost imaging technology[D](2018).
[75] XU Rui. Design and implementation of underwater laser imaging system based on ghost imaging[D](2020).
[76] BENNINK R S, BENLEY S J, BPYD R W. “Two-photon”coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).
[77] SHAPIRO J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).
[78] LE M, WANG G, ZHENG H et al. Underwater computational ghost imaging[J]. Optics Express, 25, 22859-22868(2017).
[79] FERRI F, MAGATTI D, LUGIATO L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).
[80] ZHANG Y, LI W, YU Y et al. Ghost imaging enhancement for detections of the low-transmittance objects[J]. International Journal of Advanced Robotic Systems, 17, 1-7(2020).
[81] KATZ O, BROMBERG Y, SILBERBERG Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 739(2009).
[82] ZHANG Y, LI W, WU H et al. High-visibility underwater ghost imaging in low illumination[J]. Optics Communications, 441, 45-48(2019).
[83] WANG T, CHEN M, WU H et al. Underwater compressive computational ghost imaging with wavelet enhancement[J]. Applied Optics, 60, 6950-6957(2021).
[84] YANG X, YU Z Y, XU L et al. Underwater ghost imaging based on generative adversarial networks with high imaging quality[J]. Optics Express, 29, 28388-28405(2021).
[85] LYU M, WANG W, WANG H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).
[86] WANG F, WANG H, WANG H et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).
[87] LI F Q, ZHAO M, TIAN Z et al. Compressive ghost imaging through scattering media with deep learning[J]. Optics Express, 28, 17395-17408(2020).
[88] WU H, WANG R, ZHAO G et al. Sub-Nyquist computational ghost imaging with deep learning[J]. Optics Express, 28, 3846-3853(2020).
[89] WEI He. Underwater spectral imaging with filter wheel[D](2018).
[90] Qunbo LÜ. Data processing of fourier transform imaging spectroscopy[D](2007).
[91] JOHNSEN G, VOLENT Z, DIERSSEN H et al[M]. Underwater hyperspectral imagery to create biogeochemical maps of seafloor properties, 508-535(2013).
[93] JOHNSEN G, VOLENT Z, SAKSHAUG E et al[M]. Remote sensing in the barents sea. in ecosystem barents sea, 139-166(2009).
[94] JOHNSEN G, LUDVIGSEN M, SORENSEN A et al. The use of underwater hyperspectral imaging deployed on remotely operated vehicles - methods and applications[J]. IFAC Papers on Line, 49, 476-481(2016).
[95] CHENNU A, FÄRBER P, DE'ATH G et al. A Diver-Operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats[J]. Scientific Reports, 7, 7122(2017).
[96] CHENNU A, FÄRBER P, VOLKENBORN N et al. Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments[J]. Limnology and Oceanography:Methods, 11, 511-528(2013).
[97] FOGLINI F, GRANDE V, MARCHESE F et al. Application of hyperspectral imaging to underwater habitat mapping, southern adriatic sea[J]. Sensors, 19, 2261(2019).
[98] LIU H B, STICKLUS J, KÖSER K et al. TuLUMIS - Atunable LED-based underwater multispectral imaging system[J]. Optics Express, 26, 7811-7828(2018).
[99] GUO Yilu. Research of underwater spectral image restoration methods for staring spectral imaging system[D](2019).
[100] FU X, SHANG X, SUN X et al. Underwater hyperspectral target detection with band selection[J]. Remote Sensing, 12, 1056(2020).
[101] ZHANG Haokui, LI Ying, JIANG Yenan. Deep learning for hyperspectral imagery classification: the state of the art and prospects[J]. Acta Automatica Sinica, 44, 961-977(2018).
[102] TAO Chenning. Research on spectral imaging systems and reconstruction algorithms based on compressive sensing[D](2021).
[103] SARA D, MANDAVA A K, KUMAR A et al. Hyperspectral and multispectral image fusion techniques for high resolution applications: a review[J]. Earth Science Informatics, 14, 1685-1705(2021).
[104] DIAN R, LI S, SUN B et al. Recent advances and new guidelines on hyperspectral and multispectral image fusion[J]. Information Fusion, 69, 40-51(2021).
[105] ZHANG Y, GAO Y, LIU Y et al. Hyperspectral and multispectral image fusion based on constrained CNMF unmixing[C]. 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 1-4(2015).
[106] YOKAYA N, YAIRI T, IWASAKI A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion[J]. IEEE Transactions on Geoscience & Remote Sensing, 50, 528-537(2012).
[107] GU J, WANG Z, KUEN J et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 77, 354-377(2018).
[108] PALSSON F, SVEINSSON J R, ULFARSSON M O. Multispectral and hyperspectral image fusion using a 3-d-convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 14, 639-643(2017).
[109] YANG W, ZHANG X, TIAN Y et al. Deep learning for single image super-resolution: a brief review[J]. IEEE Transactions on Multimedia, 21, 3106-3121(2019).
[110] GAO J, LI J, JIANG M. Hyperspectral and multispectral image fusion by deep neural network in a self-supervised manner[J]. Remote Sensing, 13, 3226(2021).
[111] DONOHO D L. Compressedsensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).
[112] ZENG Rong. Research on key technology of compress sensing under water optical imaging system[D](2014).
[113] WEI Ziran, YANG Wei, ZHANG Jianlin et al. Super-resolution imaging optimization of single pixel camera based on deep learning[J]. Semiconductor Optoelectronics, 42, 412-417(2021).
[114] DUARTE M F, DAVENPORT M A, TAKBAR D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).
[115] TAKHAR D, LASKA J N, WAKIN M B et al. A new compressive imaging camera architecture using optical-domain compression[C], 6005, 43-52(2006).
[116] GIBSON G M, JOHNSON S D, PADGETT M J et al. Single-pixel imaging 12 years on: a review[J]. Optics Express, 28, 28190-28208(2020).
[117] YU Wenkai, TANG Feiyao, WANG Shuofei et al. Dynamic single-pixel imaging[J]. Laser & Optoelectronics Progress, 58, 181-192(2021).
[118] ZHANG Zibang, LU Tianao, PENG Junzheng et al. Fourier single-pixel imaging techniques and applications[J]. Infrared and Laser Engineering, 48, 22-40(2019).
[119] ZHANG Z, WANG X, ZHENG G et al. Hadamard single-pixel imaging versus fourier single-pixel imaging[J]. Optics Express, 25, 19619-19639(2017).
[120] LIU B, YANG Z, LIU X et al. Coloured computational imaging with single-pixel detectors based on a 2d discrete cosine transform[J]. Journal of Modern Optics, 64, 259-264(2017).
[121] ROUSSET F, DUCROS N, FARINA A et al. Adaptive basis scan by wavelet prediction for single-pixel imaging[J]. IEEE Transactions on Computational Imaging, 3, 36-46(2017).
[122] SUN M, EDGAR M P, PHILLIPS D B et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning[J]. Optics Express, 24, 10476-10485(2016).
[123] ZHANG Z, MA X, ZHONG J. Single-pixel imaging by means of fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2014).
[124] Pei LÜ. Research of underwater imaging technology and image compression technology based on compressive sensing theory[D](2012).
[125] CHEN Q, CHAMOLI, S K, YIN P et al. Active mode single pixel imaging in the highly turbid water environment using compressive sensing[J]. IEEE Access, 7, 159390-159401(2019).
[126] YANG X, LIU Y, MOU X et al. Imaging in turbid water based on a hadamard single-pixel imaging system[J]. Optics Express, 29, 12010-12023(2021).
[127] ZHANG Z, LIU S, PENG J et al. Simultaneous spatial, spectral, and 3d compressive imaging via efficient fourier single-pixel measurements[J]. Optica, 5, 315-319(2018).
[128] ZHANG Z, WANG X, ZHENG G et al. Fast fourier single-pixel imaging via binary illumination[J]. Scientific Reports, 7, 12029(2017).
[129] YANG X, JIANG P, WU L et al. Underwater fourier single pixel imaging based on water degradation function compensation method[J]. Infrared and Laser Engineering, 49, 244-255(2020).
[130] HU Y, CHENG Z, FAN, X et al. Optimizing the quality of fourier sing-pixel imaging via generative adversarial network[J]. Optik, 227, 166060(2021).
[131] RIZVI S, CAO J, ZHANG K et al. Improving imaging quality of real-time fourier single-pixel imaging via deep learning[J]. Sensors, 19, 4190(2019).
[132] HIGHAM C F, MURRAY-SMITH R, PADGETT M J et al. Deep learning for real-time single-pixel video[J]. Scientific Reports, 8, 2369(2018).
[133] LI M, MATHAI A, LAU S L H et al. Underwater object detection and reconstruction based on active single-pixel imaging and super-resolution convolutional neural network[J]. Sensors, 21, 313(2021).
[134] UMEHARA K, OTA J, ISHIDA T. Super-resolution imaging of mammograms based on the super-resolution convolutional neural network[J]. Open Journal of Medical Imaging, 7, 180-195(2017).
[135] HUANG Wei, JIAO Shuming, XIAO Changyan. Image processing algorithms related to single-pixel imaging: a review[J]. Laser & Optoelectronics Progress, 58, 267-284(2021).
[136] YANG Huayong, LIANG Yonghui. Present situation and prospect of searching underwater objects by airborne blue-green laser system[J]. Laser Technology & Applications, 12, 6-10(2003).
[137] XU Tianci. System design and research on laser imaging for underwater target[D](2013).
[138] JIN Weiqi, WANG Xia, CAO Fengmei et al. Review of underwater opto-electrical imaging technology and equipment (II)[J]. Infrared Technology, 33, 125-132(2011).
[139] MOORE K D, JAFFE J S, OCHOA B L. Development of a new underwater bathymetric laser imaging system: L-bath[J]. Journal of Atmospheric and Oceanic Technology, 17, 1106-1117(2000).
[140] SUN Jianfeng, GAO Jian, WEI Jingsong et al. Research development of underwater detection imaging based on streak tube imaging lidar[J]. Infrared and Laser Engineering, 39, 811-814(2010).
[141] FOURNIER G R, BONNIER D, FORAND J L et al. Range-gated underwater laser imaging system[J]. Optical Engineering, 32, 2185-2190P(1993).
[142] ZHANG Zhengyu, ZHOU Shouhuan. Analys of key technology and the applications of underwater target detection by LASER[J]. Journal of Xidian University(Natural Science), 28, 797-781(2001).
[143] YAN Xuguang, PENG Fuyuan, XU Guohua et al. Analysis of temporal and frequency characteristic of fore-scattered laser in ocean channel[J]. Laser Technology, 29, 266-269(2005).
[144] KITAJIMA Y, IWAI D, SATO K. Simultaneous projection and positioning of laser projector pixels[J]. IEEE Transactions on Visualization and Computer Graphics, 23, 2419-2429(2017).
[145] WU H, ZHAO M, XU W. Underwater De-scattering imaging by laser field synchronous scanning[J]. Optics and Lasers in Engineering, 126, 105871(2020).
[146] YANG Y, ZHENG B, KAN L Y et al. 3D color reconstruction based on underwater RGB laser line scanning system[J]. Optik, 125, 6074-6077(2014).
[147] ASHER G, BRIAN C R, ROBERT S L et al. Flash lidar based on multiple-slit streak tube imaging lidar[C](2002).
[148] HAN Wenjie, DONG Guangyan, PENG Fengchao et al. Research of high resolution imaging lidar for target under water[J]. Optoelectronic Technology, 40, 1-5+18(2020).
[149] KNIGHT F K, KLICK D I, RYAN-HOWARD D P et al. Three-dimensional imaging using a single laser pulse[C], 1103, 174-189(1989).
[150] ANDREW J N. Automated processing for streak tube imaging lidar data[C], 119-129(2003).
[151] JOHN W M. High-resolution 3D underwater imaging[C], 10-19(1999).
[152] MCLEAN J W, MURRAY J T. Streak-tube lidar allows 3-D ocean surveillance[J]. Laser Focus World, 34, 171-176(1998).
[153] ROGER S, HOWARD B. Staring underwater laser radar (SULAR) 3D imaging[C], 57-64(2001).
[154] ASHER G, CHRIS W, DSHANNON B et al. FLASH lidar data collections in terrestrial and ocean environments[C], 5086, 27-38(2003).
[155] HOLMES V T, JAMES A W, KAREN A M et al. Lidar signatures of very shallow water (VSW) and surf zone (SZ) mines[C], 5089, 285-295(2003).
[156] GAO J, SUN J, WANG Q. Experiments of ocean surface waves and underwater target detection imaging using a slit Streak Tube Imaging Lidar[J]. Optik, 125, 5199-5201(2014).
[158] LI G, ZHOU Q, XU G et al. Lidar-radar for underwater target detection using a modulated sub-nanosecond Q-switched laser[J]. Optics & Laser Technology, 142, 107234(2021).
[159] LIU W, LI Q, HAO G et al. Experimental study on underwater range-gated imaging system pulse and gate control coordination strategy[C](2018).
[160] FOURNIER G R, BONNIER D., FORAND L et al. LUCIE ROV mounted laser imaging system[C], 1750, 443-452(1992).
[161] FOURNIER G R, BONNIER D, FORAND J L et al. Range-gated underwater laser imaging system[J]. Optical Engineering, 32, 2185-2190(1993).
[162] WEIDEMANN A, FOURNIER G R, FORAND L et al. In harbor underwater threat detection identification using active imaging[C], 5780, 59-70(2005).
[163] FOURNIER G R, FORAND J L, MATHIEU P et al. Range-gated active underwater imaging: evolution, performance and perspectives[C], 1-29(2008).
[164] SWARTZ B A. Laser range gate underwater imaging advances[C], 2, 722-727(1994).
[165] MCLEAN E A, BURRIS H R. Short-pulse range-gated optical imaging in turbid water[J]. Applied Optics, 34, 4343-4351(1995).
[166] TAN C S, SLUZEK A, JIANG T Y et al. Range gated imaging system for underwater robotic vehicle[C], 1-6(2006).
[168] JIN W, CAO F, WANG X et al. Rang-gated underwater laser imaging system based on intensified gate imaging technology[C], 6621(2007).
[169] CHANG Yanjun, PENG Fuyuan. Laser underwaterimagingtechniqueandexperiment[J]. Research and Explorationin Laboratory, 28, 19-21(2009).
[170] LI Dong, YANG Huajun, ZHENG Qiuzhen et al. Application of range-gated technology in the three-dimensional imaging laser radar[J]. Infrared and Laser Engineering, 41, 85-88(2012).
[171] HUANG Ziheng. Research on underwater target 3-D imaging method based on range-gated laser imaging technology[D](2016).
[172] RISHOLM P, THORSTENSEN J, THIELEMANN J T et al. Real-time super-resolved 3D in turbid water using a fast range-gated CMOS camera[J]. Applied Optics, 57, 3927-3937(2018).
[173] BUSCK J. Underwater 3-D optical imaging with a gated viewing laser radar[J]. Optical Engineering, 44, 116001(2005).
[174] ZHANG Qingbo, ZHANG Xiaohui, HAN Hongwei. Backscattered light repairing method for underwater laser image based on improved generative adversarial network[J]. Laser Technology & Applications, 56, 114-122(2019).
[175] ZHOU L, XIAO Y, CHEN W. Imaging through turbid media with vague concentrations based on cosine similarity and convolutional neural network[J]. IEEE Photonics Journal, 11, 1-15(2019).
[176] ILLIG D W, KOCAN K X, MULLEN L J. Machine learning applied to the underwater radar-encoded laser system[C], 1-6(2020).
[177] YUAN Qingyu. Research on underwater three-dimensional imaging and image processing of streak tube imaging lidar[D](2018).
[178] DI J, YU Y, WANG Z et al. Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry[J]. Optics Express, 24, 28185-28193(2016).
[179] DI J, ZHAO J, JIANG H et al. High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning[J]. Applied Optics, 47, 5654-5659(2008).
[180] SUN W, ZHAO J, DI J et al. Real-time visualization of Karman vortex street in water flow field by using digital holography[J]. Optics Express, 17, 20342-20348(2009).
[181] ZHANG Y, ZHAO J, DI J et al. Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry[J]. Optics Express, 20, 18415-18421(2012).
[182] ZHAO J, JIANG H, DI J. Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography[J]. Optics Express, 16, 2514-2519(2008).
[183] KNOX C. Holographic microscopy as a technique for recording dynamic microscopic subjects[J]. Science, 153, 989-990(1966).
[184] BEERS J R, KNOX C, STRICKLAND J D H. A permanent record of plankton samples using holography[J]. Limnology and Oceanography, 15, 967-970(1970).
[185] KNOX C, BROOKS R E, GABOR D. Holographic motion picture microscopy[J]. Proceedings of the Royal Society of London, Series B: Biological Sciences, 174, 115-121(1969).
[186] KATZ J, DONAGHAY P L, ZHANG J et al. Submersible holocamera for detection of particle characteristics and motions in the ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 46, 1455-1481(1999).
[187] ROBERT B O, ALEX A Z. In-line digital holographic sensor for monitoring and characterizing marine particulates[J]. Optical Engineering, 39, 2187-2197(2000).
[188] JERICHO S K, GARCIA S J, XU W et al. Submersible digital in-line holographic microscope[J]. Review of Scientific Instruments, 77, 043706(2006).
[189] MALKIEL E, ABRAS J N, KATZ J. Automated scanning and measurements of particle distributions within a holographic reconstructed volume[J]. Measurement Science and Technology, 15, 601-612(2004).
[190] NAYAK A R, MALKIEL E, MCFARLAND M N et al. A Review of holography in the aquatic sciences: In situ characterization of particles, plankton, and small scale biophysical interactions[J]. Frontiers in Marine Science, 7(2021).
[191] GRAHAM G W, NIMMO SMITH W A M. The application of holography to the analysis of size and settling velocity of suspended cohesive sediments[J]. Limnology and Oceanography: Methods, 8, 1-15(2010).
[192] CROSS J, NIMMO SMITH W A M, TORRES R et al. Biological controls on resuspension and the relationship between particle size and the Kolmogorov length scale in a shallow coastal sea[J]. Marine Geology, 343, 29-38(2013).
[193] WANG Y, ZHANG W, YU X. Measurement of suspended particle and plankton with a digital in-line holographic system[C], 1-4(2016).
[194] NAYAK A R, MCFARLAND M N, SULLIVAN J M et al. Evidence for ubiquitous preferential particle orientation in representative oceanic shear flows[J]. Limnology and Oceanography, 63, 122-143(2018).
[195] DYOMIN V, DAVYDOVA A, DAVYDOV S et al. Hydrobiological probe for the in situ study and monitoring of zooplankton[C], 1-6(2019).
[196] MOORE T S, MOUW C B, SULLIVAN J M et al. Bio-optical properties of cyanobacteria blooms in Western Lake Erie[J]. Frontiers in Marine Science, 4(2017).
[197] MOORE T S, CHURNSIDE J H, SULLIVAN J M et al. Vertical distributions of blooming cyanobacteria populations in a freshwater lake from LIDAR observations[J]. Remote Sensing of Environment, 225, 347-367(2019).
[198] MALLERY K, CANELON D, HONG J et al. Design and experiments with a robot-driven underwater holographic microscope for low-cost in situ particle measurements[J]. Journal of Intelligent & Robotic Systems, 102, 32(2021).
[199] DYOMIN V, DAVYDOVA A, POLOVTSEV I et al. Underwater holographic sensor for plankton studies in situ including accompanying measurements[J]. Sensors, 21, 4863(2021).
[200] ZHANG G, GUAN T, SHEN Z et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express, 26, 19388-19405(2018).
[201] XIAO W, WANG Q, PAN F et al. Adaptive frequency filtering based on convolutional neural networks in off-axis digital holographic microscopy[J]. Biomedical Optics Express, 10, 1613-1626(2019).
[202] MENG Zhang, DING Hao, NIE Shouping et al. Application of deep learning in digital holographic microscopy[J]. Laser Technology & Applications, 58, 1811006(2021).
[203] SINHA A, LEE J, LI S et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017).
[204] WANG H, LYU M, SITU G. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 26, 22603-22614(2018).
[205] WANG K, DOU J, KEMAO Q et al. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction[J]. Optics Letters, 44, 4765-4768(2019).
[206] WANG K, KEMAO Q, DI J et al. Y4-Net: a deep learning solution to one-shot dual-wavelength digital holographic reconstruction[J]. Optics Letters, 45, 4220-4223(2020).
[207] SHAO S, MALLERY K, KUMAR S S et al. Machine learning holography for 3D particle field imaging[J]. Optics Express, 28, 2987-2999(2020).
[208] SHIMOBABA T, TAKAHASHI T, YAMAMOTO Y et al. Digital holographic particle volume reconstruction using a deep neural network[J]. Applied Optics, 58, 1900-1906(2019).
[209] MALLERY K, HONG J. Regularized inverse holographic volume reconstruction for 3D particle tracking[J]. Optics Express, 27, 18069-18084(2019).
[210] SHI Z, WANG K, CAO L et al. Study on holographic image recognition technology of zooplankton[J]. DEStech Transactions on Computer Science and Engineering(2019).
[211] GUO B, NYMAN L, NAYAK A R et al. Automated plankton classification from holographic imagery with deep convolutional neural networks[J]. Limnology and Oceanography: Methods, 19, 21-36(2021).
[212] COTTER E, FISCHELL E, LAVERY A. Computationally efficient processing of in situ underwater digital holograms[J]. Limnology and Oceanography: Methods, 19, 476-487(2021).
[213] HUBER P J[M]. Robust estimation of a location parameter(1964).
Get Citation
Copy Citation Text
Jun XIE, Jianglei DI, Yuwen QIN. Application of Deep Learning in Underwater Imaging(Invited)[J]. Acta Photonica Sinica, 2022, 51(11): 1101001
Category: Atmospheric and Oceanic Optics
Received: Apr. 26, 2022
Accepted: Jun. 27, 2022
Published Online: Dec. 13, 2022
The Author Email: Jianglei DI (jiangleidi@gdut.edu.cn), Yuwen QIN (qinyw@gdut.edu.cn)