Acta Optica Sinica, Volume. 44, Issue 20, 2014003(2024)

Design of Blue Band Photonic-Crystal Surface-Emitting Lasers Based on Field Distribution Modulation and Porous GaN DBR

Qifa Liu1,2, Ke Liu1, Wanqing Li1, Han Guo1, Yuxiao Yang3, and Gangyi Zhu1、*
Author Affiliations
  • 1School of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, Jiangsu , China
  • 2State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu , China
  • show less
    References(52)

    [2] Hamaguchi T, Makino T, Hayashi K et al. Spontaneously implemented spatial coherence in vertical-cavity surface-emitting laser dot array[J]. Scientific Reports, 12, 21629(2022).

    [3] Chen T S, Li Z L, Hsu M Y et al. Photonic crystal surface emitting lasers with quantum dot active region[J]. Journal of Lightwave Technology, 35, 4547-4552(2017).

    [4] Han L, Gao Y B, Hang S et al. Impact of p-AlGaN/GaN hole injection layer on GaN-based vertical cavity surface emitting laser diodes[J]. Chinese Optics Letters, 20, 031402(2022).

    [5] Feezell D F. Status and future of GaN-based vertical-cavity surface-emitting lasers[J]. Proceedings of SPIE, 9363, 93631G(2015).

    [6] Zhou W D, Pan M S. The future of photonic crystal surface-emitting lasers[J]. Applied Physics Letters, 123, 140501(2023).

    [8] Yoshida M, de Zoysa M, Ishizaki K et al. Photonic-crystal lasers with high-quality narrow-divergence symmetric beams and their application to LiDAR[J]. Journal of Physics: Photonics, 3, 022006(2021).

    [9] Li R S, Lu H Y. Research on threshold gain and output optical power of photonic crystal surface emitting lasers[J]. Laser & Optoelectronics Progress, 59, 0314004(2022).

    [10] Fu X R, Li S P. Effect of in mole fraction in upper waveguide layer on performance of InGaN-based blue lasers[J]. Acta Optica Sinica, 43, 2014002(2023).

    [11] Michiue A, Miyoshi T, Kozaki T et al. High-power pure blue InGaN laser diodes[J]. IEICE Transactions on Electronics, 194-197(2009).

    [12] Kawaguchi M, Imafuji O, Nozaki S et al. Optical-loss suppressed InGaN laser diodes using undoped thick waveguide structure[J]. Proceedings of SPIE, 9748, 974818(2016).

    [13] Pan S, Sun C H, Zhou Y G et al. Investigation of the electroluminescence mechanism of GaN-based blue and green light-emitting diodes with junction temperature range of 120‒373 K[J]. Applied Sciences, 10, 444(2020).

    [14] Murayama M, Nakayama Y, Yamazaki K et al. Watt-class green (530 nm) and blue (465 nm) laser diodes[J]. Physica Status Solidi (a), 215, 1700513(2018).

    [15] Zhou Y, He S M, Shen W et al. Analysis of high-speed modulation performance of photonic crystal surface-emitting blue lasers[J]. Chinese Journal of Lasers, 50, 2301001(2023).

    [16] Liu L, Edgar J H. Substrates for gallium nitride epitaxy[J]. Materials Science and Engineering: R: Reports, 37, 61-127(2002).

    [17] Matsubara H, Yoshimoto S, Saito H et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths[J]. Science, 319, 445-447(2008).

    [18] Kawashima S, Kawashima T, Nagatomo Y et al. GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding[J]. Applied Physics Letters, 97, 251112(2010).

    [19] Corzine S W, Coldren L A. Theoretical gain in compressive and tensile strained InGaAs/InGaAsP quantum wells[J]. Applied Physics Letters, 59, 588-590(1991).

    [20] Kamp M. On-chip beam steering[J]. Nature Photonics, 4, 411-412(2010).

    [22] Bakoz A P, Liles A A, Gonzalez-Fernandez A A et al. Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector[J]. Light: Science & Applications, 7, 39(2018).

    [23] Watanabe A, Hirose K, Sugiyama T et al. Fabrication and characterization of photonic-crystal surface-emitting lasers with triangular double-hole lattice points[J]. Proceedings of SPIE, 10123, 101231O(2017).

    [26] Sakaguchi T, Kunishi W, Arimura S et al. Surface-emitting photonic-crystal laser with 35 W peak power[C], 2-4(2009).

    [29] Imada M, Chutinan A, Noda S et al. Multidirectionally distributed feedback photonic crystal lasers[J]. Physical Review B, 65, 195306(2002).

    [30] Chen S W, Lu T C, Kao T T. Study of GaN-based photonic crystal surface-emitting lasers (PCSELs) with AlN/GaN distributed Bragg reflectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 885-891(2009).

    [32] Nakajima H, Mitomo J, Fujii K et al. Recent progress in GaN-based vertical-cavity surface-emitting lasers having dielectric distributed Bragg reflectors[C], 13-18(2018).

    [37] Chen D T, Han J. High reflectance membrane-based distributed Bragg reflectors for GaN photonics[J]. Applied Physics Letters, 101, 221104(2012).

    [40] Hashemi E, Bengtsson J, Gustavsson J S et al. TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime[J]. Journal of Vacuum Science & Technology B, 33, 050603(2015).

    [41] Heo J, Guo W, Bhattacharya P. Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon[J]. Applied Physics Letters, 98, 021110(2011).

    [42] Lee J, Park J, Lee M. Nanostructured TiO2 diffraction grating fabricated via imprinting and TiCl4 treatment[J]. Journal of Materials Chemistry C, 2, 981-985(2014).

    [44] Choi K R, Woo J C, Joo Y H et al. Dry etching properties of TiO2 thin films in O2/CF4/Ar plasma[J]. Vacuum, 92, 85-89(2013).

    [47] Kalapala A, Song A Y, Pan M S et al. Scaling challenges in high power photonic crystal surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 58, 2400409(2022).

    [49] Farrell R M, Haeger D A, Hsu P S et al. Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes[J]. Applied Physics Letters, 99, 171115(2011).

    [50] Piprek J. Internal power loss in GaN-based lasers: mechanisms and remedies[J]. Optical and Quantum Electronics, 49, 329(2017).

    [52] Yang Z X, Kuo C Y, Lin G. Simulation of photonic-crystal surface-emitting lasers with air-hole and air-pillar structures[J]. Photonics, 8, 189(2021).

    Tools

    Get Citation

    Copy Citation Text

    Qifa Liu, Ke Liu, Wanqing Li, Han Guo, Yuxiao Yang, Gangyi Zhu. Design of Blue Band Photonic-Crystal Surface-Emitting Lasers Based on Field Distribution Modulation and Porous GaN DBR[J]. Acta Optica Sinica, 2024, 44(20): 2014003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Apr. 24, 2024

    Accepted: May. 28, 2024

    Published Online: Oct. 12, 2024

    The Author Email: Zhu Gangyi (zhugangyi@njupt.edu.cn)

    DOI:10.3788/AOS240912

    CSTR:32393.14.AOS240912

    Topics