Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 1, 203(2021)
Cadmium-free and lead-free environment-friendly blue quantum dots and light-emitting diodes
[1] [1] LI L, REISS P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection [J].Journal of the American Chemical Society, 2008, 130(35): 11588-11589.
[2] [2] KIM S, KIM T, KANG M, et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes [J]. Journal of the American Chemical Society, 2012, 134(8): 3804-3809.
[3] [3] DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525): 96-99.
[4] [4] ZHANG H, SUN X W, CHEN S M. Over 100 cd·A-1 efficient quantum dot light-emitting diodes with inverted tandem structure [J]. Advanced Functional Materials, 2017, 27(21): 1700610.
[5] [5] ZHANG H, CHEN S M, SUN X W. Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21% [J].ACS Nano, 2018, 12(1): 697-704.
[6] [6] WU Z H, LIU P, ZHANG W D, et al. Development of InP quantum dot-based light-emitting diodes [J]. ACS Energy Letters, 2020, 5(4): 1095-1106.
[7] [7] LIU X K, XU W D, BAI S, et al. Metal halide perovskites for light-emitting diodes [J]. Nature Materials, 2021, 20:10-21. doi: 10.1038/s41563-020-0784-7.
[8] [8] WANG Y H, TIAN Y, LUO Y X, et al. Spectrally stable blue electroluminescence of mixed-halide perovskite light-emitting diodes featuring ion migration inhibition [J]. Organic Electronics, 2020, 86: 105919.
[9] [9] BRUNETTI V, CHIBLI H, FIAMMENGO R, et al. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment [J]. Nanoscale, 2013, 5(1): 307-317.
[10] [10] The European Commission.Directive 2011/65/EU of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment [R]. The European Commission, 2011.
[11] [11] Nanoco Group Plc. European commission to prohibit cadmium from TVs and displays by October 2019 [EB/OL]. (2017-08-09). https://www.nanocotechnologies.com/media/european-commission-to-prohibit-cadmium/.
[12] [12] BATTAGLIA D, PENG X G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent [J].Nano Letters, 2002, 2(9): 1027-1030.
[13] [13] WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes [J]. Nature, 2019, 575(7784): 634-638.
[14] [14] KOH S, EOM T, KIM W D, et al. Zinc-phosphorus complex working as an atomic valve for colloidal growth of monodisperse indium phosphide quantum dots [J]. Chemistry of Materials, 2017, 29(15): 6346-6355.
[15] [15] RAMASAMY P, KO K J, KANG J W, et al. Two-step “seed-mediated” synthetic approach to colloidal indium phosphide quantum dots with high-purity photo-and electroluminescence [J]. Chemistry of Materials, 2018, 30(11): 3643-3647.
[16] [16] HAHM D, CHANG J H, JEONG B G, et al. Design Principle for Bright, Robust, and Color-Pure InP/ZnSexS1-x/ZnS heterostructures [J]. Chemistry of Materials, 2019, 31(9): 3476-3484.
[17] [17] XU S, ZIEGLER J, NANN T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals [J].Journal of Materials Chemistry, 2008, 18(23): 2653-2656.
[18] [18] LIM K, JANG H S, WOO K. Synthesis of blue emitting InP/ZnS quantum dots through control of competition between etching and growth [J].Nanotechnology, 2012, 23(48): 485609.
[19] [19] TAMANG S, LINCHENEAU C, HERMANS Y, et al. Chemistry of InP nanocrystal syntheses [J]. Chemistry of Materials, 2016, 28(8): 2491-2506.
[20] [20] SHEN W, TANG H Y, YANG X L, et al. Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes [J]. Journal of Materials Chemistry C, 2017, 5(32): 8243-8249.
[21] [21] COSSAIRT B M. Shining light on indium phosphide quantum dots: understanding the interplay among precursor conversion, nucleation, and growth [J].Chemistry of Materials, 2016, 28(20): 7181-7189.
[22] [22] REISS P, CARRIRE M, LINCHENEAU C, et al. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials [J]. Chemical reviews, 2016, 116(18): 10731-10819.
[23] [23] HUANG F, BI C H, GUO R Q, et al. Synthesis of colloidal blue-emitting InP/ZnS core/shell quantum dots with the assistance of copper cations [J]. The Journal of Physical Chemistry Letters, 2019, 10(21): 6720-6726.
[24] [24] ZHANG H, MA X Y, LIN Q L, et al. High-brightness blue InP quantum dot-based electroluminescent devices: the role of shell thickness [J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 960-967.
[25] [25] ZHANG W D, DING S H, ZHUANG W D, et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes [J]. Advanced Functional Materials, 2020, 30(49): 2005303.
[26] [26] KIM K H, JO J H, JO D Y, et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity [J]. Chemistry of Materials, 2020, 32(8): 3537-3544.
[27] [27] MOON H, LEE W, KIM J, et al. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes [J]. Chemical Communications, 2019, 55(88): 13299-13302.
[28] [28] ROGACH A L, KLAR T A, LUPTON J M, et al. Energy transfer with semiconductor nanocrystals [J]. Journal of Materials Chemistry, 2009, 19(9): 1208-1221.
[29] [29] BOZYIGIT D, YAREMA O, WOOD V. Origins of low quantum efficiencies in quantum dot LEDs [J].Advanced Functional Materials, 2013, 23(24): 3024-3029.
[30] [30] SHEN H B, WANG H Z, LI X M, et al. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals [J]. Dalton Transactions, 2009(47): 10534-10540.
[31] [31] JI W Y, JING P T, XU W, et al. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure [J]. Applied Physics Letters, 2013, 103(5): 053106.
[32] [32] WANG A Q, SHEN H B, ZANG S P, et al. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes [J]. Nanoscale, 2015, 7(7): 2951-2959.
[33] [33] LIU Y, TANG Y, NING Y, et al. “One-pot” synthesis and shape control of ZnSe semiconductor nanocrystals in liquid paraffin [J]. Journal of Materials Chemistry, 2010, 20(21): 4451-4458.
[34] [34] JANG E P, HAN C Y, LIM S W, et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters [J]. ACS Applied Materials & Interfaces, 2019, 11(49): 46062-46069.
[35] [35] PARK S, SON C, KANG S, et al. Development of highly efficient blue-emitting ZnSexTe1-x/ZnSe/ZnS quantum dots and their electroluminescence application [J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 348-355.
[36] [36] HAN C Y, LEE S H, SONG S W, et al. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices [J]. ACS Energy Letters, 2020, 5(5): 1568-1576.
[37] [37] KIM T, KIM K H, KIM S, et al. Efficient and stable blue quantum dot light-emitting diode [J]. Nature, 2020, 586(7829): 385-389.
[38] [38] XIANG C Y, KOO W, CHEN S, et al. Solution processed multilayer cadmium-free blue/violet emitting quantum dots light emitting diodes [J]. Applied Physics Letters, 2012, 101(5): 053303.
[39] [39] BAO Z, JIANG Z F, SU Q, et al. ZnSe:Te/ZnSeS/ZnS nanocrystals: an access to cadmium-free pure-blue quantum-dot light-emitting diodes [J]. Nanoscale, 2020, 12(21): 11556-11561.
[40] [40] JIANG Y Z, QIN C C, CUI M H, et al. Spectra stable blue perovskite light-emitting diodes [J]. Nature Communications, 2019, 10(1): 1868.
[41] [41] OCHSENBEIN S T, KRIEG F, SHYNKARENKO Y, et al. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals [J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21655-21660.
[42] [42] XING J, ZHAO Y B, ASKERKA M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes [J]. Nature Communications, 2018, 9(1): 3541.
[43] [43] MONDAL N, DE A, SAMANTA A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals [J].ACS Energy Letters, 2019, 4(1): 32-39.
[44] [44] HOU S C, GANGISHETTY M K, QUAN Q M, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping [J]. Joule, 2018, 2(11): 2421-2433.
[45] [45] ZHOU L, LIAO J F, HUANG Z G, et al. A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection [J]. Angewandte Chemie International Edition, 2019, 58(16): 5277-5281.
[46] [46] JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure [J]. Advanced Materials, 2018, 30(43): 1804547.
[47] [47] CHENG P F, SUN L, FENG L, et al. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals [J]. Angewandte Chemie, 2019, 131(45): 16233-16237.
[48] [48] LIAN L Y, ZHENG M Y, ZHANG W Z, et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons [J]. Advanced Science, 2020, 7(11): 2000195.
[49] [49] WANG L T, SHI Z F, MA Z Z, et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h [J]. Nano Letters, 2020, 20(5): 3568-3576.
[50] [50] CHEN H J, PINA J M, YUAN F L, et al. Multiple self-trapped emissions in the lead-free halide Cs3Cu2I5 [J]. The Journal of Physical Chemistry Letters, 2020, 11(11): 4326-4330.
[51] [51] LI Y Y, VASHISHTHA P, ZHOU Z C, et al. Room temperature synthesis of stable, printable Cs3Cu2X5 (X= I, Br/I, Br, Br/Cl, Cl) colloidal nanocrystals with near-unity quantum yield green emitters (X=Cl) [J]. Chemistry of Materials, 2020, 32(13): 5515-5524.
Get Citation
Copy Citation Text
ZHAO Fang-qing, HAO Jian-hua, WANG Kai. Cadmium-free and lead-free environment-friendly blue quantum dots and light-emitting diodes[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(1): 203
Category:
Received: Oct. 11, 2020
Accepted: --
Published Online: Aug. 22, 2021
The Author Email: ZHAO Fang-qing (11968010@mail.sustech.edu.cn)