Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1237003(2024)

Few-Shot Image Classification Algorithm of Graph Neural Network Based on Swin Transformer

Kai Wang1, Jie Ren1、*, and Weichuan Zhang2
Author Affiliations
  • 1School of Electronics and Information, Xi'an Polytechnic University, Xi'an 710048, Shaanxi , China
  • 2Institute for Integrated and Intelligent Systems, Graiffith University, Brisbane 4702, Australia
  • show less
    Figures & Tables(15)
    Overview structure of STransGNN
    Network structure of Swin Transformer
    Network structure of Block
    Graph neural network
    Edge network structure
    Model converegence on CUB-200-2011 dataset
    Model loss on CUB-200-2011 dataset
    Feature visualization results
    • Table 1. Information in experimental dataset

      View table

      Table 1. Information in experimental dataset

      DatasetNumber of imagesNumber of classesNumber of Train/Val/Test samples
      CUB-200-201111788200100/50/50
      Stanford Dogs2058012070/20/30
      Stanford Cars16185196130/17/49
      Mini-Imagenet6000010064/16/20
    • Table 2. Classification accuray on CUB-200-2011 dataset unit: %

      View table

      Table 2. Classification accuray on CUB-200-2011 dataset unit: %

      MethodBackbone5-way 1-shot5-way 5-shot
      ProtoNet6Conv-464.82±0.2385.74±0.14
      RelationNet8Conv-463.94±0.9277.87±0.64
      DN49Conv-457.45±0.8084.41±0.58
      FAN11Conv-474.90±0.2189.39±0.12
      CTX7Conv-472.61±0.2186.23±0.14
      BSNet10Conv-462.84±0.9585.39±0.56
      BDFAN12Conv-479.08±0.2092.22±0.10
      DPGN21Conv-476.05±0.5189.08±0.38
      ProtoNet6ResNet-1281.02±0.2091.93±0.11
      FAN11ResNet-1284.30±0.1893.34±0.10
      CTX7ResNet-1280.39±0.2091.01±0.11
      BDFAN12ResNet-1285.44±0.1894.73±0.09
      DPGN21ResNet-1275.71±0.4791.48±0.33
      STransGNN91.08±0.4494.63±0.50
    • Table 3. Classification accuracy on Standford Dogs dataset unit: %

      View table

      Table 3. Classification accuracy on Standford Dogs dataset unit: %

      MethodBackbone5-way 1-shot5-way 5-shot
      ProtoNet6Conv-446.66±0.2070.77±0.16
      RelationNet8Conv-447.35±0.8866.20±0.74
      BSNet10Conv-443.42±0.8671.90±0.68
      FAN11Conv-460.14±0.2179.26±0.15
      CTX7Conv-457.86±0.2173.59±0.16
      BDFAN12Conv-464.74±0.2281.29±0.14
      ProtoNet6ResNet-1273.81±0.2187.39±0.12
      FAN11ResNet-1276.76±0.2188.74±0.12
      CTX7ResNet-1273.22±0.2285.90±0.13
      BDFAN12ResNet-1276.89±0.2188.27±0.12
      STransGNN85.21±0.4595.68±0.46
    • Table 4. Classification accuracy on Standford Cars dataset unit: %

      View table

      Table 4. Classification accuracy on Standford Cars dataset unit: %

      MethodBackbone5-way 1-shot5-way 5-shot
      ProtoNet6Conv-450.88±0.2374.89±0.18
      RelationNet8Conv-446.20±0.9168.52±0.78
      FAN11Conv-467.48±0.2287.97±0.11
      CTX7Conv-466.35±0.2182.25±0.14
      BSNet10Conv-440.89±0.7786.88±0.50
      BDFAN12Conv-475.74±0.2091.58±0.09
      ProtoNet6ResNet-1285.46±0.1995.08±0.08
      FAN11ResNet-1288.01±0.1795.75±0.07
      CTX7ResNet-1285.03±0.1992.63±0.11
      BDFAN12ResNet-1290.44±0.1597.49±0.05
      STransGNN91.10±0.4394.15±0.47
    • Table 5. Classification accuracy on Mini-Imagenet dataset unit: %

      View table

      Table 5. Classification accuracy on Mini-Imagenet dataset unit: %

      MethodBackbone5-way 1-shot5-way 5-shot
      ProtoNet6ConvNet49.42±0.7868.20±0.66
      RelationNet8ConvNet50.44±0.8265.32±0.70
      GNN18ConvNet50.33±0.3666.41±0.63
      DPGN21ConvNet66.01±0.3682.83±0.41
      FEAT28ResNet-1262.96±0.0278.49±0.02
      MetaGAN29ResNet-1252.71±0.6468.63±0.67
      DPGN21ResNet-1267.77±0.3284.60±0.43
      STransGNN71.94±0.5384.21±0.80
    • Table 6. Classification accuracy of ablation experiment

      View table

      Table 6. Classification accuracy of ablation experiment

      Experiment No.ExtractorMeasurement method5-way 1-shot5-way 5-shot
      ResNet-12Swin TransformerCosine similarityL2 norm
      175.71±0.5191.48±0.33
      288.63±0.4593.01±0.38
      388.20±0.4692.89±0.60
      491.08±0.4494.63±0.50
    • Table 7. Complexity analysis of models

      View table

      Table 7. Complexity analysis of models

      MethodParams /106FLOPs /109Memory /GB
      GNN181.620.191.3
      DN490.128.983.4
      DPGN215.791.411.8
      STransGNN28.664.422.4
    Tools

    Get Citation

    Copy Citation Text

    Kai Wang, Jie Ren, Weichuan Zhang. Few-Shot Image Classification Algorithm of Graph Neural Network Based on Swin Transformer[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1237003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jun. 25, 2023

    Accepted: Sep. 4, 2023

    Published Online: Jun. 3, 2024

    The Author Email: Ren Jie (renjie@xpu.edu.cn)

    DOI:10.3788/LOP231596

    Topics