Acta Photonica Sinica, Volume. 53, Issue 1, 0114002(2024)
Single-frequency Nd∶YAG Pulsed Laser at 1 116 nm
[1] DING Jianyong, YU Guangli, ZHANG Lei et al. Research progress and application of all solid-state narrow-width single-frequency lasers[C], 142-150(2018).
[2] LONG Jiangxiong, LI Gang, YANG Bin et al. Research progress of seed-injected all-solid-state single-frequency pulsed lasers[J]. Laser & Optoelectronics Progress, 55, 7-14(2018).
[3] ED B. An introduction to pound-drever-hall laser frequency stabilization[J]. American Journal of Physics, 69, 79-87(2001).
[4] NICKLAUS K, MORASCH V, HOEFER M et al. Frequency stabilization of Q-switched Nd∶YAG oscillators for airborne and spaceborne lidar systems[C], 6451(2007).
[5] HOVIS F E, EDELMAN J, SCHUM T et al. Recent progress on single frequency lasers for space and high altitude aircraft applications[C], 68710E(2008).
[6] LEMMERZ C, LUX O, REITEBUCH O et al. Frequency and timing stability of an airborne injection-seeded Nd∶YAG laser system for direct-detection wind lidar[J]. Applied Optics, 56, 9057-9068(2017).
[7] CHU Xinzhao, PAN Weilin, PAPEN G et al. Fe Boltzmann temperature lidar: design, error analysis, and initial results at the North and South Poles[J]. Applied Optics, 41, 4400-4410(2002).
[8] LAUTENBACH J, HÖFFNER J. Scanning iron temperature lidar for mesopause temperature observation[J]. Applied Optics, 43, 4559-4563(2004).
[9] LAUTENBACH J, HOEFFNER J, MENZEL P et al. The new scanning iron lidar, current state and future developments[C], 590, 327-329(2005).
[10] KAIFLER B, BÜDENBENDER C, MAHNKE P et al. Demonstration of an iron fluorescence lidar operating at 372 nm wavelength using a newly-developed Nd∶YAG laser[J]. Optics Letters, 42, 2858-2861(2017).
[11] LIU Wenbin, ZHANG Di, LI Jiang et al. High power single wavelength ceramic Nd∶YAG laser at 1116 nm[J]. Optics and Laser Technology, 46, 139-141(2013).
[12] ZHANG Huanian, CHEN Xiaohan, WANG Qingpu et al. Continuous-wave dual-wavelength Nd∶YAG ceramic laser at 1112 and 1116 nm[J]. Chinese Physics Letters, 30, 94-96(2013).
[14] KOECHNER W[M]. Solid-state laser engineering, 78-94(2002).
[15] FAN T Y, BYER R L. Diode laser-pumped solid-state lasers[J]. Journal of Quantum Electronics, 24, 895-912(1988).
[16] SINGH S, SMITH R G, VAN U L G. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature[J]. Physical Review B, 10, 2566-2572(1974).
[17] LI Shutao, ZHANG Xingyu, WANG Qingpu. Discussion on effective stimulated emission Cross sections for R2→Y3 transitions in Nd∶YAG crystals[J]. Laser and Infrared, 34, 157-158(2004).
[18] KRUPKE W F, SHINN M D, MARION J E et al. Spectroscopic, optical, and thermomechanical properties of neodymium-and chromium-doped gadolinium scandium gallium garnet[J]. Journal of the Optical Society of America. B, 3, 102-114(1986).
[19] EVTUHOV V, SIEGMAN A E. A twisted-mode technique for obtaining axially uniform energy density in a laser cavity[J]. Applied Optics, 4, 142-143(1965).
[20] ZHOU Jun. Study of injection-seeded single frequency all solid-state laser[D](2007).
Get Citation
Copy Citation Text
Xiaoyue DONG, Shuang LIU, Guojiang BI, Keqiang WANG, Xiaojie MAO. Single-frequency Nd∶YAG Pulsed Laser at 1 116 nm[J]. Acta Photonica Sinica, 2024, 53(1): 0114002
Category:
Received: Jul. 4, 2023
Accepted: Aug. 16, 2023
Published Online: Feb. 1, 2024
The Author Email: Keqiang WANG (wkq519@139.com)