Laser Technology, Volume. 45, Issue 5, 585(2021)
Microstructure and properties of laser cladding Ti-Al-N composite coating on TC4 surface
[1] [1] BANERJEE D, WILLIAMS J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013, 61(3): 844-879.
[2] [2] LIU Y F, ZHOU Y L, ZHANG Q, et al. Microstructure and dry sliding wear behavior of plasma transferred arc clad Ti5Si3 reinforced intermetallic composite coatings[J]. Journal of Alloys & Compounds, 2014, 591: 251-258.
[3] [3] ZHOU Y, WEN S F, SONG B, et al. A novel titanium alloy manufactured by selective laser melting: Microstructure, high temperature oxidation resistance[J]. Materials & Design, 2016, 89: 1199-1204.
[4] [4] SONG R, LI J, SHAO J Z, et al. Microstructural evolution and wear behaviors of laser cladding Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC[J]. Applied Surface Science, 2015, 355: 298-309.
[5] [5] ZHANG H X, YU H J, CHEN C Z. In-situ forming composite coating by laser cladding C/B4C[J]. Materials and Manufacturing Processes, 2015, 30(6): 743-747.
[6] [6] YANG Y, ZHANG D, YAN W, et al. Microstructure and wear pro-perties of TiCN/Ti coatings on titanium alloy by laser cladding[J]. Optics and Lasers in Engineering, 2010, 48(1): 119-124.
[7] [7] LIU M K, TANG H B, FANG Y L, et al. Wear resistance of laser clad TiC/Ti-Ti2Co coating on titanium alloy[J]. Laser Technology, 2011, 35(4): 444-447(in Chinese).
[8] [8] EKLUND P, BECKERS M, JANSSON U, et al. The Mn+1AXn phases: Materials science and thin film processing[J]. Thin Solid Films, 2010, 518(8): 1851-1878.
[9] [9] MARTIN M, MAURIZIO M. Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory[J]. Thin Solid Films, 2017, 621(1): 108-130.
[10] [10] WANG Q M, RENTERIA A F, SCHROETER O, et al. Fabrication and oxidation behavior of Cr2AlC coating on Ti6242 alloy[J]. Surface & Coating Technology, 2010, 204(15): 2343-2352.
[11] [11] LI W T, WANG A Y, KE P L, et al. A high oxidation resistance Ti2AlC coating on Zirlo substrates for loss-of-coolant accident conditions[J]. Ceramics International, 2019, 45(11): 13912-13922.
[12] [12] WANG Z Y, MA G S, LIU L L, et al. High-performance Cr2AlC MAX phase coatings: Oxidation mechanisms in the 900-1100℃ temperature range[J]. Corrosion Science, 2020, 167: 108492.
[13] [13] TANG C C, STEINBRUECK M, STUEBER M, et al. Deposition, characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4[J]. Corrosion Science, 2018, 135(1): 87-98.
[14] [14] GUO L, YAN Z, WANG X, et al. Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings[J]. Ceramics International, 2019, 45(6): 7627-7634.
[15] [15] SMIALEK J L, NESBITT J A, GABB T P, et al. Hot corrosion and low cycle fatigue of a Cr2AlC-coated superalloy[J]. Materials Science and Engineering, 2018, A711: 119-129.
[16] [16] SINGH A, BAKSHI S R, HARIMKAR S P, et al. In-situ synthesis of TiC/SiC/Ti3SiC2 composite coatings by spark plasma sintering[J]. Surface & Coatings Technology, 2011,205(13/14): 3840-3846.
[17] [17] MRZ M, TYRA M, BADEN M, et al. Thermal stability enhancement of Cr2AlC coatings on Zr by utilizing a double layer diffusion barrier[J]. Journal of the European Ceramic Society, 2020, 40(4): 1119-1124.
[18] [18] ZHANG Z, LIM S H, PAN J S, et al. Kerosene-fuelled high velocity oxy-fuel (HVOF) spray of Ti2AlC MAX phase powders[J]. Journal of Alloys & Compounds, 2018, 735: 377-385.
[19] [19] MAIER B R, GARCIA D B L, SRIDHARAN K, et al. Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding[J]. Ceramics International, 2018, 44(1): 1046-1051.
[20] [20] GO T, SOHN Y J, JULIAN G, et al. Cold spray deposition of Cr2AlC MAX phase for coatings and bond-coat layers [J]. Journal of the European Ceramic Society, 2019, 39(4): 860-867.
[21] [21] TOYSERKANI E, KHAJEPOUR A, CORBIN S F. Laser cladding[M]. New York, USA: CRC Press, 2004: 87-224.
[22] [22] ZHANG L C, CHEN L Y, WANG L. Surface modification of titanium and titanium alloys: Technologies, developments, and future interests[J]. Advanced Engineering Materials, 2020, 22(5): 1-37.
[23] [23] ZHANG L T, LIU D X, ZHANG W Q, et al. Research progress of laser cladding coating on titanium alloy surface[J]. Surface Technology, 2020, 49(8): 97-104(in Chinese).
[24] [24] YEOM H, HAUCH B, SRIDHARAN K, et al. Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate[J]. Thin Solid Films, 2016,615: 202-209.
[25] [25] BAHIRAEI M, MAZAHERI Y, SHEIKHI M, et al. A new a-pproach to synthesis Ti2AlC MAX phase using PVD coating and post laser treatment[J]. Surface & Coatings Technology, 2020, 385: 125314.
[26] [26] LI X, ZHANG C H, ZHANG S, et al. Manufacturing of Ti3SiC2 lubricated Co-based alloy coatings using laser cladding technology[J]. Optics and Laser Technology, 2019, 114: 209-215.
[27] [27] YAN H, LIU K W, ZHANG P L, et al. Fabrication and tribological behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-based composite coatings by laser cladding for self-lubricating applications [J]. Optics and Laser Technology, 2020, 126: 106077.
[28] [28] LI S N, XIONG H P, LI N, et al. Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding[J]. Ceramics International, 2016, 43(1): 961-967.
[29] [29] LI N, LIU W, XIONG H P, et al. In-situ reaction of Ti-Si-C composite powder and formation mechanism of laser deposited Ti6Al4V/ (TiC+Ti3SiC2) system functionally graded material [J]. Materials and Design, 2019, 183: 108155.
[30] [30] CHEN D Q, TIAN X J, WANG H M, et al. Rapid synthesis of bulk Ti3AlC2 by laser melting[J]. Materials Letters, 2014, 129(13/14):98-100.
[31] [31] RICHARDSON P, CUSKELLY D, BRANDT M, et al. Microstructural analysis of in-situ reacted Ti2AlC MAX phase composite coating by laser cladding[J]. Surface & Coatings Technology, 2020,385: 125360.
Get Citation
Copy Citation Text
YOU Chuanchuan, XIAO Huaqiang, REN Lirong, ZHAO Xinxin. Microstructure and properties of laser cladding Ti-Al-N composite coating on TC4 surface[J]. Laser Technology, 2021, 45(5): 585
Category:
Received: Oct. 16, 2020
Accepted: --
Published Online: Sep. 9, 2021
The Author Email: XIAO Huaqiang (xhq-314@163.com)