International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45006(2025)
3D nanoprinting piezoceramic with large elastic deformation and high piezoelectricity
[1] [1] Park K I et al. 2014. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.Adv. Mater.26, 2514–2520.
[2] [2] Tao H et al. 2019. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence.J. Am. Chem. Soc.141, 13987–13994.
[3] [3] Qiu C R et al. 2020. Transparent ferroelectric crystals with ultrahigh piezoelectricity.Nature577, 350–354.
[4] [4] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T and Nakamura M. 2004. Lead-free piezoceramics.Nature432, 84–87.
[5] [5] Zhang S J, Li F, Jiang X N, Kim J, Luo J and Geng X C. 2015. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—a review.Prog. Mater. Sci.68, 1–66.
[6] [6] Nguyen T D, Deshmukh N, Nagarah J M, Kramer T, Purohit P K, Berry M J and McAlpine M C. 2012. Piezoelectric nanoribbons for monitoring cellular deformations.Nat. Nanotechnol.7, 587–593.
[7] [7] Wu J G, Fan Z, Xiao D Q, Zhu J G and Wang J. 2016. Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures.Prog. Mater. Sci.84, 335–402.
[8] [8] Chen M J et al. 2019. 3D nanoprinting of perovskites.Adv. Mater.31, 1904073.
[9] [9] Zhang B W, Tan D, Cao X D, Tian J Y, Wang Y G, Zhang J X, Wang Z L and Ren K L. 2022. Flexoelectricity-enhanced photovoltaic effect in self-polarized flexible PZT nanowire array devices.ACS Nano16, 7834–7847.
[10] [10] Cui X, Ni X and Zhang Y. 2016. Theoretical study of output of piezoelectric nanogenerator based on composite of PZT nanowires and polymers.J. Alloys Compd.675, 306–310.
[11] [11] Chen C Y, Liu T H, Zhou Y S, Zhang Y, Chueh Y L, Chu Y H, He J H and Wang Z L. 2012. Electricity generation based on vertically aligned PbZr0.2Ti0.8O3 nanowire arrays.Nano Energy1, 424–428.
[12] [12] Chen X, Xu S Y, Yao N and Shi Y. 2010. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers.Nano Lett.10, 2133–2137.
[13] [13] Xu S, Hansen B J and Wang Z L. 2010. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics.Nat. Commun.1, 93.
[14] [14] Zhou C K, Lin H R, He Q Q, Xu L J, Worku M, Chaaban M, Lee S, Shi X Q, Du M H and Ma B W. 2019. Low dimensional metal halide perovskites and hybrids.Mater. Sci. Eng. R137, 38–65.
[15] [15] Chen J, Fu Y P, Samad L, Dang L N, Zhao Y Z, Shen S H, Guo L J and Jin S. 2017. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I).Nano Lett.17, 460–466.
[16] [16] Fu Y P, Zhu H M, Chen J, Hautzinger M P, Zhu X Y and Jin S. 2019. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties.Nat. Rev. Mater.4, 169–188.
[17] [17] Song L F, Glinsek S and Defay E. 2021. Toward low-temperature processing of lead zirconate titanate thin films: advances, strategies, and applications.Appl. Phys. Rev.8, 041315.
[18] [18] Gao H, Hu Y W, Xuan Y, Li J, Yang Y L, Martinez R V, Li C Y, Luo J, Qi M H and Cheng G J. 2014. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures.Science346, 1352–1356.
[19] [19] Jung W et al. 2021. Three-dimensional nanoprinting via charged aerosol jets.Nature592, 54–59.
[20] [20] Zhao S Y et al. 2020. Additive manufacturing of silica aerogels.Nature584, 387–392.
[21] [21] Wang D Z, Zhao X J, Lin Y G, Liang J S, Ren T Q, Liu Z H and Li J Y. 2018. Nanoscale coaxial focused electrohydrodynamic jet printing.Nanoscale10, 9867–9879.
[22] [22] Wang D Z et al. 2022. Large area polymer semiconductor sub-microwire arrays by coaxial focused electrohydrodynamic jet printing for high-performance OFETs.Nat. Commun.13, 6214.
[23] [23] Shao Y L et al. 2020. 3D crumpled ultrathin 1T MoS2 for inkjet printing of Mg-Ion asymmetric micro-supercapacitors.ACS Nano14, 7308–7318.
[24] [24] Liashenko I, Rosell-Llompart J and Cabot A. 2020. Ultrafast 3D printing with sub-micrometer features using electrostatic jet deflection.Nat. Commun.11, 753.
[25] [25] Lee S, Kim S W, Ghidelli M, An H S, Jang J, Bassi A L, Lee S Y and Park J U. 2020. Integration of transparent supercapacitors and electrodes using nanostructured metallic glass films for wirelessly rechargeable, skin heat patches.Nano Lett.20, 4872–4881.
[26] [26] Park Y G, Yun I, Chung W G, Park W, Lee D H and Park J U. 2022. High-resolution 3D printing for electronics.Adv. Sci.9, 2104623.
[27] [27] Lee S, Wajahat M, Kim J H, Pyo J, Chang W S, Cho S H, Kim J T and Seol S K. 2019. Electroless deposition-assisted 3D printing of micro circuitries for structural electronics.ACS Appl. Mater. Interfaces11, 7123–7130.
[28] [28] Goh G L, Agarwala S and Yeong W Y. 2019. Aerosol-jet-printed preferentially aligned carbon nanotube twin-lines for printed electronics.ACS Appl. Mater. Interfaces11, 43719–43730.
[29] [29] Lei Y S et al. 2020. A fabrication process for flexible single-crystal perovskite devices.Nature583, 790–795.
[30] [30] Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y and Zhang X M. 2018. Ultrahigh piezoelectric properties in textured (K, Na) NbO3 -based lead-free ceramics.Adv. Mater.30, 1705171.
[31] [31] Goh G L, Zhang H N, Chong T H and Yeong W Y. 2021. 3D printing of multilayered and multimaterial electronics: a review.Adv. Electron. Mater.7, 2100445.
[32] [32] Li K, Wang D Z, Wang Q, Song K D, Liang J S, Sun Y L and Madoua M. 2018. Thermally assisted electrohydrodynamic jet high-resolution printing of high-molecular weight biopolymer 3D structures.Macromol. Mater. Eng.303, 1800345.
[33] [33] Meng Z et al. 2022. Micro/nanoscale electrohydrodynamic printing for functional metallic structures.Mater. Today Nano20, 100254.
[34] [34] Zhou N J, Liu C Y, Lewis J A and Ham D. 2017. Gigahertz electromagnetic structures via direct ink writing for radiofrequency oscillator and transmitter applications.Adv. Mater.29, 1605198.
[35] [35] Truby R L and Lewis J A. 2016. Printing soft matter in three dimensions.Nature540, 371–378.
[36] [36] Gan-Calvo A M, Lpez-Herrera J M, Herrada M A, Ramos A and Montanero J M. 2018. Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray.J. Aerosol Sci.125, 32–56.
[37] [37] Hirt L, Reiser A, Spolenak R and Zambelli T. 2017. Additive manufacturing of metal structures at the micrometer scale.Adv. Mater.29, 1604211.
[38] [38] Banerjee A et al. 2018. Ultralarge elastic deformation of nanoscale diamond.Science360, 300–302.
[39] [39] Zhang H T et al. 2016. Approaching the ideal elastic strain limit in silicon nanowires.Sci. Adv.2, e1501382.
[40] [40] Maschmann M R, Ehlert G J, Dickinson B T, Phillips D M, Ray C W, Reich G W and Baur J W. 2014. Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection.Adv. Mater.26, 3230–3234.
Get Citation
Copy Citation Text
Li Kai, Fan Sufeng, Wang Xiaoying, Lu Yang. 3D nanoprinting piezoceramic with large elastic deformation and high piezoelectricity[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45006
Category:
Received: Oct. 21, 2024
Accepted: Sep. 9, 2025
Published Online: Sep. 9, 2025
The Author Email: