Journal of Synthetic Crystals, Volume. 51, Issue 8, 1422(2022)

Modulation of Mg Doping on Microstructure and Electro-Thermal Conduction of CuAlO2 Polycrystals with Delafossite Structure

LI Yi, WU Haorong, HU Yiding, MENG Jiayuan, SONG Hongyuan, TANG Yanyan, LI Zhenhua, CHEN Liangwei, LIU Bin, and YU Lan
Author Affiliations
  • [in Chinese]
  • show less
    References(25)

    [4] [4] YANAGI H, INOUE S I, UEDA K, et al. Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2[J]. Journal of Applied Physics, 2000, 88(7): 4159.

    [8] [8] KAWAZOE H, YASUKAWA M, HYODO H, et al. P-type electrical conduction in transparent thin films of CuAlO2[J]. Nature, 1997, 389(6654): 939-942.

    [9] [9] HAMADA I, KATAYAMA-YOSHIDA H. Energetics of native defects in CuAlO2[J]. Physica B: Condensed Matter, 2006, 376/377: 808-811.

    [10] [10] TANG Y Y, QIN M, HU Y D, et al. Solid solubility of Mg and enhanced electrical conduction in the C-axis orientation of CuCr1-xMgxO2 polycrystals[J]. Journal of Asian Ceramic Societies, 2020, 8(2): 537-541.

    [11] [11] DONG G B, ZHANG M, LAN W, et al. Structural and physical properties of Mg-doped CuAlO2 thin films[J]. Vacuum, 2008, 82(11): 1321-1324.

    [12] [12] RUTTANAPUN C, MAENSIRI S. Effects of spin entropy and lattice strain from mixed-trivalent Fe3+/Cr3+ on the electronic, thermoelectric and optical properties of delafossite CuFe1-xCrxO2(x = 0.25, 0.5, 0.75)[J]. Journal of Physics D: Applied Physics, 2015, 48(49): 495103.

    [13] [13] HU Y D, LI Y, WU H R, et al. Laser-induced transverse voltage effect in c-axis inclined CuCr0.98Mg0.02O2 thin films with dominant phonon thermal conductivity[J]. Journal of Applied Physics, 2021, 130(14): 143104.

    [15] [15] KUROTORI T, SUGIHARA S. Thermoelectric properties of CuAl1-xMxO2 (M=Zn, Ca)[J]. Materials Transactions, 2005, 46(7): 1462-1465.

    [16] [16] YANAGIYA S, VAN NONG N, XU J, et al. The effect of (Ag, Ni, Zn)-addition on the thermoelectric properties of copper aluminate[J]. Materials, 2010, 3(1): 318-328.

    [17] [17] ONO Y, SATOH K I, NOZAKI T, et al. Structural, magnetic and thermoelectric properties of delafossite-type oxide, CuCr1-xMgxO2(0≤x≤0.05)[J]. Japanese Journal of Applied Physics, 2007, 46(3A): 1071-1075.

    [19] [19] CHEN L, HU M Y, WU P, et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics[J]. Journal of the American Ceramic Society, 2019, 102(8): 4809-4821.

    [20] [20] LIU C, REN F, WANG H, et al. Solid-state synthesis and some properties of magnesium-doped copper aluminum oxides[J].MRS Online Proceedings Library, 2010, 1218(1): 1-6.

    [22] [22] LAN W, ZHANG M, DONG G B, et al. Improvement of CuAlO2 thin film electrical conduction by the anisotropic conductivity[J]. Journal of Materials Research, 2007, 22(12): 3338-3343.

    [23] [23] PARK K, KO K Y, SEONG J K, et al. Microstructure and high-temperature thermoelectric properties of polycrystalline CuAl1-xMgxO2 ceramics[J]. Journal of the European Ceramic Society, 2007, 27(13/14/15): 3735-3738.

    [24] [24] ZOU Y S, WANG H P, ZHANG S L, et al. Structural, electrical and optical properties of Mg-doped CuAlO2 films by pulsed laser deposition[J]. RSC Advances, 2014, 4(78): 41294-41300.

    [25] [25] LIU R J, LI Y F, YAO B, et al. Shallow acceptor state in Mg-doped CuAlO2 and its effect on electrical and optical properties: an experimental and first-principles study[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12608-12616.

    [26] [26] PELLS G P. Radiation-induced degradation of the intrinsic electrical conductivity of MgAl2O4 and Al2O3[J]. Journal of Nuclear Materials, 1991, 184(3): 177-182.

    [28] [28] LIU M S, LIN M C C, HUANG I T, et al. Enhancement of thermal conductivity with carbon nanotube for nanofluids[J]. International Communications in Heat and Mass Transfer, 2005, 32(9): 1202-1210.

    [29] [29] CHO J Y, SHI X, SALVADOR J R, et al. Thermoelectric properties and investigations of low thermal conductivity in Ga-doped Cu2GeSe3[J]. Physical Review B, 2011, 84(8): 085207.

    [30] [30] ZHOU T, LENOIR B, COLIN M, et al. Promising thermoelectric properties in AgxMo9Se11 compounds (3.4≤x≤3.9)[J]. Applied Physics Letters, 2011, 98(16): 162106.

    [31] [31] SHEN J J, FANG T, FU T Z, et al. Lattice thermal conductivity in thermoelectric materials[J]. Journal of Inorganic Materials, 2019, 34(3): 260.

    [32] [32] ZHANG X Y, PEI Y Z. Manipulation of charge transport in thermoelectrics[J]. Npj Quantum Materials, 2017, 2: 68.

    [33] [33] MUTA H, KANEMITSU T, KUROSAKI K, et al. Substitution effect on thermoelectric properties of ZrNiSn based half-Heusler compounds[J]. Materials Transactions, 2006, 47(6): 1453-1457.

    [34] [34] NOZAKI T, HAYASHI K, KAJITANI T. Mn-substitution effect on thermal conductivity of delafossite-type oxide CuFeO2[J]. Journal of Electronic Materials, 2010, 39(9): 1798-1802.

    [35] [35] SLACK G A, GALGINAITIS S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe[J]. Physical Review, 1964, 133(1A): A253-A268.

    Tools

    Get Citation

    Copy Citation Text

    LI Yi, WU Haorong, HU Yiding, MENG Jiayuan, SONG Hongyuan, TANG Yanyan, LI Zhenhua, CHEN Liangwei, LIU Bin, YU Lan. Modulation of Mg Doping on Microstructure and Electro-Thermal Conduction of CuAlO2 Polycrystals with Delafossite Structure[J]. Journal of Synthetic Crystals, 2022, 51(8): 1422

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 13, 2022

    Accepted: --

    Published Online: Sep. 26, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics