Infrared and Laser Engineering, Volume. 50, Issue 11, 20210619(2021)
Exciton-polaritons in Fabry-Pérot microcavity based on halide perovskites (Invited)
[1] Huang K. Lattice vibrations and optical waves in ionic crystals[J]. Nature, 167, 779-780(1951).
[2] Hopfield J J. Theory of the contribution of excitons to the complex dielectric constant of crystals[J]. Physical Review Letters, 1, 427-428(1958).
[3] Weisbuch C, Nishioka M, Ishikawa A, et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity[J]. Physical Review Letters, 69, 3314-3317(1992).
[4] Kasprzak J, Richard M, Kundermann S, et al. Bose-einstein condensation of exciton polaritons[J]. Nature, 443, 409-414(2006).
[5] Balili R, Hartwell V, Snoke D, et al. Bose-einstein condensation of microcavity polaritons in a trap[J]. Science, 316, 1007-1010(2007).
[6] Zhang S, Zhong Y G, Yang F, et al. Cavity engineering of two-dimensional perovskites and inherent light-matter interaction[J]. Photonics Research, 8, A72-A90(2020).
[7] Lerario G, Fieramosca A, Barachati F, et al. Room-temperature superfluidity in a polariton condensate[J]. Nature Physics, 13, 837-842(2017).
[8] Dominici L, Dagvadorj G, Fellows J M, et al. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid[J]. Sci Adv, 1, e1500807(2015).
[9] Zhang S, Chen J, Shi J, et al. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity[J]. ACS Photonics, 7, 327-337(2020).
[10] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (cspbx(3), x=cl, br, and i): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 15, 3692-3696(2015).
[11] Zhang Q, Ha S T, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Lett, 14, 5995-6001(2014).
[12] Weiner J S, Yu P Y. Free carrier lifetime in semi-insulating gaas from time-resolved band-to-band photoluminescence[J]. Journal of Applied Physics, 55, 3889-3891(1984).
[13] Zhao X H, DiNezza M J, Liu S, et al. Determination of cdte bulk carrier lifetime and interface recombination velocity of cdte/mgcdte double heterostructures grown by molecular beam epitaxy[J]. Applied Physics Letters, 105, 252101(2014).
[14] Rosenwaks Y, Shapira Y, Huppert D. Metal reactivity effects on the surface recombination velocity at inp interfaces[J]. Applied Physics Letters, 57, 2552-2554(1990).
[15] Ahrenkiel R K. Measurement of minority-carrier lifetime by time-resolved photoluminescence[J]. Solid-State Electronics, 35, 239-250(1992).
[16] Zhang Q, Su R, Liu X F, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets[J]. Advanced Functional Materials, 26, 6238-6245(2016).
[17] Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets[J]. Nano Lett, 17, 3982-3988(2017).
[18] Hu J, Yan L, You W. Two-dimensional organic-inorganic hybrid perovskites: A new platform for optoelectronic applications[J]. Adv Mater, 30, e1802041(2018).
[19] Mao L, Stoumpos C C, Kanatzidis M G. Two-dimensional hybrid halide perovskites: Principles and promises[J]. J Am Chem Soc, 141, 1171-1190(2019).
[20] Saparov B, Mitzi D B. Organic-inorganic perovskites: Structural versatility for functional materials design[J]. Chem Rev, 116, 4558-4596(2016).
[21] Fujita T, Sato Y, Kuitani T, et al. Tunable polariton absorption of distributed feedback microcavities at room temperature[J]. Physical Review B, 57, 12428(1998).
[22] Brehier A, Parashkov R, Lauret J S, et al. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors[J]. Applied Physics Letters, 89, 171110(2006).
[23] Wenus J, Parashkov R, Ceccarelli S, et al. Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity[J]. Physical Review B, 74, 235212(2006).
[24] Lanty G, Zhang S, Lauret J S, et al. Hybrid cavity polaritons in a zno-perovskite microcavity[J]. Physical Review B, 84, 195449(2011).
[25] Fieramosca A, De Marco L, Passoni M, et al. Tunable out-of-plane excitons in 2D single-crystal perovskites[J]. ACS Photonics, 5, 4179-4185(2018).
[26] Fieramosca A, Polimeno L, Ardizzone V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature[J]. Sci Adv, 5, eaav9967(2019).
[27] Polimeno L, Fieramosca A, Lerario G, et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites[J]. Advanced Optical Materials, 8, 2000176(2020).
[28] Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nat Mater, 14, 636-642(2015).
[29] Zhou H, Yuan S, Wang X, et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section[J]. ACS Nano, 11, 1189-1195(2017).
[30] Park K, Lee J W, Kim J D, et al. Light-matter interactions in cesium lead halide perovskite nanowire lasers[J]. J Phys Chem Lett, 7, 3703-3710(2016).
[31] Zhang S, Shang Q Y, Du W N, et al. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/-nanowires[J]. Advanced Optical Materials, 6, 1701032(2018).
[32] Du W N, Zhang S, Shi J, et al. Strong exciton-photon coupling and lasing behavior in all-inorganic cspbbr3 micro/nanowire fabry-perot cavity[J]. ACS Photonics, 5, 2051-2059(2018).
[33] Shang Q, Li C, Zhang S, et al. Enhanced optical absorption and slowed light of reduced-dimensional cspbbr3 nanowire crystal by exciton-polariton[J]. Nano Lett, 20, 1023-1032(2020).
[34] Evans T J S, Schlaus A, Fu Y, et al. Continuous‐wave lasing in cesium lead bromide perovskite nanowires[J]. Advanced Optical Materials, 6, 1700982(2017).
[35] Shang Q, Li M, Zhao L, et al. Role of the exciton-polariton in a continuous-wave optically pumped cspbbr3 perovskite laser[J]. Nano Lett, 20, 6636-6643(2020).
[36] Su R, Wang J, Zhao J, et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites[J]. Sci Adv, 4, eaau0244(2018).
[37] Su R, Ghosh S, Wang J, et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature[J]. Nature Physics, 16, 301-306(2020).
[38] Wang J, Xu H, Su R, et al. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities[J]. Light Sci Appl, 10, 45(2021).
[39] Su R, Ghosh S, Liew T C H, et al. Optical switching of topological phase in a perovskite polariton lattice[J]. Sci Adv, 7, eabf8049(2021).
[40] Baumberg J J, Savvidis P G, Stevenson R M, et al. Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation[J]. Physical Review B, 62, 16247-16250(2000).
[41] Savvidis P G, Baumberg J J, Stevenson R M, et al. Angle-resonant stimulated polariton amplifier[J]. Phys Rev Lett, 84, 1547-1550(2000).
[42] Wu J, Ghosh S, Su R, et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities[J]. Nano Lett, 21, 3120-3126(2021).
[43] Fan Q, Biesold-McGee G V, Ma J, et al. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties[J]. Angew Chem Int Ed Engl, 59, 1030-1046(2020).
[44] Li X, Hoffman J M, Kanatzidis M G. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency[J]. Chem Rev, 121, 2230-2291(2021).
[45] Wang X, Shoaib M, Wang X, et al. High-quality in-plane aligned cspbx3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling[J]. ACS Nano, 12, 6170-6178(2018).
[46] Tian C, Guo T, Zhao S Q, et al. Low-threshold room-temperature continuous-wave optical lasing of single-crystalline perovskite in a distributed reflector microcavity[J]. RSC Advances, 9, 35984-35989(2019).
[47] Zhang X, Shi H, Dai H, et al. Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet[J]. ACS Appl Mater Interfaces, 12, 5081-5089(2020).
[48] Wang J, Su R, Xing J, et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite[J]. ACS Nano, 12, 8382-8389(2018).
[49] Bouteyre P, Son Nguyen H, Lauret J S, et al. Directing random lasing emission using cavity exciton-polaritons[J]. Opt Express, 28, 39739-39749(2020).
[50] Bao W, Liu X, Xue F, et al. Observation of rydberg exciton polaritons and their condensate in a perovskite cavity[J]. Proc Natl Acad Sci U S A, 116, 20274-20279(2019).
[51] Dang N H M, Gerace D, Drouard E, et al. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces[J]. Nano Lett, 20, 2113-2119(2020).
Get Citation
Copy Citation Text
Zhuoya Zhu, Shuai Zhang, Wenna Du, Qing Zhang, Xinfeng Liu. Exciton-polaritons in Fabry-Pérot microcavity based on halide perovskites (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210619
Category: Special issue-Advanced technology of microcavity photonics materials and devices
Received: Aug. 27, 2021
Accepted: --
Published Online: Dec. 7, 2021
The Author Email: Wenna Du (duwn@nanoctr.cn)