Laser & Optoelectronics Progress, Volume. 56, Issue 20, 201006(2019)

Low-Altitude UAV Detection and Recognition Method Based on Optimized YOLOv3

Qi Ma1,2、*, Bin Zhu1,2、**, Hongwei Zhang1,2、***, Yang Zhang1,2, and Yuchen Jiang1,2
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, College of Electronic Engineering, National University of Defense Technology, Hefei, Anhui 230037, China
  • 2National University of Defense Technology, Hefei, Anhui 230037, China
  • show less
    Figures & Tables(7)
    Structural diagram of detection and recognition for low-altitude UAV
    Residual block structural diagram
    Diagrams of 12 anchors with 4 scales. At each scale, the solid box is a corresponding square, and the dotted boxes are the corresponding anchor boxes. (a) 10×10; (b) 20×20; (c) 40×40; (d) 80×80
    Comparison of partial detection resultson test dataset (The first and third columns are the results of the YOLOv3 method, and the second and fourth columns are the results of the O-YOLOv3 method). (a) DJ-Air; (b) DJ-Pro; (c) DJ-3
    • Table 1. O-YOLO network structure for detection and recognition of low altitude UAV

      View table

      Table 1. O-YOLO network structure for detection and recognition of low altitude UAV

      Repetition timesTypeFiltersSizeOutput
      Convolutional163×3640×640×16
      Convolutional323×3/2320×320×32
      Convolutional161×1
      Convolutional323×3
      Residual320×320×32
      Convolutional643×3/2160×160×64
      Convolutional321×1
      Convolutional643×3
      Residual160×160×64
      Convolutional1283×3/280×80×128
      Convolutional641×1
      Convolutional1283×3
      Residual80×80×128
      Convolutional2563×3/240×40×256
      Convolutional1281×1
      Convolutional2563×3
      Residual40×40×256
      Convolutional5123×3/220×20×512
      Convolutional2561×1
      Convolutional5123×3
      Residual20×20×512
      Convolutional10243×3/210×10×1024
      Convolutional5121×1
      Convolutional10243×3
      Residual10×10×1024
      AvgpoolGlobal
      Connected3
      Softmax
    • Table 2. Processing methods and sample numbers for different train datasets

      View table

      Table 2. Processing methods and sample numbers for different train datasets

      TraindatasetProcessing methodNumberof samples
      UAV_AOriginal2400
      UAV_BOriginal + Image enhancement4800
      UAV_COriginal + Image enhancement +Data augmentation46000
    • Table 3. Evaluation results of different methods on different test datasets

      View table

      Table 3. Evaluation results of different methods on different test datasets

      Train setMethodDetection speed /s-1mAP /%AP /%
      DJ-AirDJ-ProDJ-3
      UAV_AYOLOv330.2870.1164.1460.6285.57
      O-YOLOv326.1377.8773.8669.1290.63
      UAV_BYOLOv329.8771.2464.5662.1387.02
      O-YOLOv325.7579.4375.0171.2492.04
      UAV_CYOLOv330.0573.8667.2365.0289.34
      O-YOLOv325.8582.1577.8673.2595.33
    Tools

    Get Citation

    Copy Citation Text

    Qi Ma, Bin Zhu, Hongwei Zhang, Yang Zhang, Yuchen Jiang. Low-Altitude UAV Detection and Recognition Method Based on Optimized YOLOv3[J]. Laser & Optoelectronics Progress, 2019, 56(20): 201006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 12, 2019

    Accepted: May. 20, 2019

    Published Online: Oct. 22, 2019

    The Author Email: Qi Ma (905303927@qq.com), Bin Zhu (zhubineei@163.com), Hongwei Zhang (zhw25055@163.com)

    DOI:10.3788/LOP56.201006

    Topics