Journal of the Chinese Ceramic Society, Volume. 52, Issue 11, 3492(2024)
Degradation of Acidic Red G by H2O2 Activated with Nanosheet MFI-Fe Zeolite
[1] [1] JI Y J, ZHANG W L, YANG H H, et al. Green synthesis of poly(pyrrole methane) for enhanced adsorption of anionic and cationic dyes from aqueous solution[J]. J Colloid Interface Sci, 2021, 590: 396–406.
[2] [2] LIU Y, ZHU W Y, GUAN K, et al. Freeze-casting of alumina ultra-filtration membranes with good performance for anionic dye separation[J]. Ceram Int, 2018, 44(10): 11901–11904.
[3] [3] JI Y J, XU F Y, WEI W, et al. Efficient and fast adsorption of methylene blue dye onto a nanosheet MFI zeolite[J]. J Solid State Chem, 2021, 295: 121917.
[4] [4] ABILAJI S, SATHISHKUMAR K, NARENKUMAR J, et al. Sequential photo electro oxidation and biodegradation of textile effluent: Elucidation of degradation mechanism and bacterial diversity[J]. Chemosphere, 2023, 331: 138816.
[7] [7] SHI B F, ZHAO C C, JI Y J, et al. Promotion effect of PANI on Fe-PANI/Zeolite as an active and recyclable Fenton-like catalyst under near-neutral condition[J]. Appl Surf Sci, 2020, 508: 145298.
[8] [8] RAO Y F, HAN F M, CHEN Q, et al. Efficient degradation of diclofenac by LaFeO3-catalyzed peroxymonosulfate oxidation: -kinetics and toxicity assessment[J]. Chemosphere, 2019, 218: 299–307.
[9] [9] WANG L X, WANG L, MENG X J, et al. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts[J]. Adv Mater, 2019, 31(50): e1901905.
[11] [11] DENG J H, JIANG J Y, ZHANG Y Y, et al. FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II[J]. Appl Catal B Environ, 2008, 84(3/4): 468–473.
[12] [12] DE SOUZA W F, GUIMARES I R, OLIVEIRA L C A, et al. Natural and H2-reduced limonite for organic oxidation by a Fenton-like system: Mechanism study via ESI-MS and theoretical calculations[J]. J Mol Catal A Chem, 2007, 278(1/2): 145–151.
[13] [13] SU Y C, ZHAO X L, BI Y J, et al. High-concentration organic dye removal using Fe2O3·3.9MoO3 nanowires as Fenton-like catalysts[J]. Environ Sci: Nano, 2018, 5(9): 2069–2076.
[14] [14] RODRGUEZ A, OVEJERO G, SOTELO J L, et al. Heterogeneous Fenton catalyst supports screening for mono azo dye degradation in contaminated wastewaters[J]. Ind Eng Chem Res, 2010, 49(2): 498–505.
[15] [15] XIE R J, LIU G Y, LIU D P, et al. Wet scrubber coupled with heterogeneous UV/Fenton for enhanced VOCs oxidation over Fe/ZSM-5 catalyst[J]. Chemosphere, 2019, 227: 401–408.
[16] [16] JI Y J, SHI B F, YANG H H, et al. Synthesis of isomorphous MFI nanosheet zeolites for supercritical catalytic cracking of n-dodecane[J]. Appl Catal A Gen, 2017, 533: 90–98.
[18] [18] YAN Y, JIANG S S, ZHANG H P, et al. Preparation of novel Fe-ZSM-5 zeolite membrane catalysts for catalytic wet peroxide oxidation of phenol in a membrane reactor[J]. Chem Eng J, 2015, 259: 243–251.
[19] [19] ZHU Q, YAN J R, DAI Q G, et al. Ethylene glycol assisted synthesis of hierarchical Fe-ZSM-5 nanorods assembled microsphere for adsorption Fenton degradation of chlorobenzene[J]. J Hazard Mater, 2020, 385: 121581.
[20] [20] JIANG X, SU X F, BAI X F, et al. Conversion of methanol to light olefins over nanosized [Fe, Al]ZSM-5 zeolites: Influence of Fe incorporated into the framework on the acidity and catalytic performance[J]. Microporous Mesoporous Mater, 2018, 263: 243–250.
[22] [22] DAI C, TIAN X K, NIE Y L, et al. Effect of the interaction mode of H2O2 over CuMnO2 surface on •OH generation for efficient degradation of ofloxacin: Activity and mechanism[J]. Chem Eng J, 2023, 451: 138749.
[23] [23] TONG M P, LIU F Y, DONG Q Q, et al. Magnetic Fe3O4-deposited flower-like MoS2 nanocomposites for the Fenton-like Escherichia coli disinfection and diclofenac degradation[J]. J Hazard Mater, 2020, 385: 121604.
[25] [25] LUO X L, HU H T, PAN Z, et al. Efficient and stable catalysis of hollow Cu9S5 nanospheres in the Fenton-like degradation of organic dyes[J]. J Hazard Mater, 2020, 396: 122735.
[26] [26] TAN J Q, WANG J J, TAN Z J, et al. Efficient activation of peroxydisulfate by a novel magnetic nanocomposite lignin hydrogel for contaminant degradation: Radical and nonradical pathways[J]. Chem Eng J, 2023, 451: 138504.
[27] [27] HE Y Z, WANG Z W, WANG H, et al. Confinement of ZIF-derived copper-cobalt-zinc oxides in carbon framework for degradation of organic pollutants[J]. J Hazard Mater, 2022, 440: 129811.
[28] [28] OUYANG Q, LIAN J T, LU B Z, et al. Effects and mechanisms of lincomycin degradation by six promoters in the mZVI/H2O2 systems[J]. Chem Eng J, 2020, 387: 123417.
[29] [29] WANG X H, NAN Z D. Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism[J]. Sep Purif Technol, 2020, 233: 116023.
[30] [30] LIU B M, LIU Z X, YU P, et al. Enhanced removal of tris(2-chloroethyl) phosphate using a resin-based nanocomposite hydrated iron oxide through a Fenton-like process: Capacity evaluation and pathways[J]. Water Res, 2020, 175: 115655.
[31] [31] YAO Y Y, LAI L, YU Z X, et al. Carbon/iron by-product from catalytic methane decomposition as recyclable Fenton catalyst for pollutant degradation[J]. J Hazard Mater, 2022, 437: 129328.
[32] [32] JI Y J, XIE Y P, ZHENG L Y, et al. Efficient activation of peroxymonosulfate by porous Co-doped LaFeO3 for organic pollutants degradation in water[J]. J Solid State Chem, 2021, 297: 122077.
Get Citation
Copy Citation Text
XU Feiya, JI Yajun, YANG Honghui, LI Qingfei, ZHANG Zongwen, GUO Peiyin, LIU Minghua. Degradation of Acidic Red G by H2O2 Activated with Nanosheet MFI-Fe Zeolite[J]. Journal of the Chinese Ceramic Society, 2024, 52(11): 3492
Category:
Received: Dec. 10, 2023
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: JI Yajun (jiyajun928@163.com)