Laser & Optoelectronics Progress, Volume. 61, Issue 22, 2237006(2024)

Attention Mechanism-Based Backlight Image Enhancement

Fenggang Han1, Kan Chang1,2、*, Shucheng Xia1, and Xuxin Tai1
Author Affiliations
  • 1School of Computer, Electronics and Information, Guangxi University, Nanning 530004, Guangxi , China
  • 2Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, Guangxi , China
  • show less
    Figures & Tables(10)
    Overall structure of proposed network
    Overall structure of DEB
    Overall structure of BMAM
    Enhanced images obtained by each method on BAID dataset. (a) Input image; (b) EnlightenGAN; (c) Zero-DCE; (d) CLIP-LIT; (e) SNR; (f) RetinexFormer; (g) FECNet; (h) LCDPNet; (i) proposed; (j) GT
    Enhanced images obtained by each method on Backlit300 dataset. (a) Input image; (b) EnlightenGAN; (c) Zero-DCE; (d) CLIP-LIT; (e) SNR; (f) RetinexFormer; (g) FECNet; (h) LCDPNet; (i) DLEN; (j) proposed
    Enhanced images obtained by each method on LCDP dataset. (a) Input image; (b) EnlightenGAN; (c) Zero-DCE; (d) CLIP-LIT; (e) SNR; (f) RetinexFormer; (g) FECNet; (h) LCDPNet; (i) proposed; (j) GT
    • Table 1. Quantitative experimental results of each method on BAID and Backlit300 datasets

      View table

      Table 1. Quantitative experimental results of each method on BAID and Backlit300 datasets

      MethodBAIDBacklit300
      PSNR /dBSSIMLPIPSMUSIQMUSIQ
      EnlightenGAN17.550.84210.196848.300448.23
      Zero-DCE17.660.82290.208748.745347.78
      CLIP-LIT21.570.86180.160455.615452.86
      SNR22.500.87040.156251.854552.52
      DLEN23.410.88610.152051.379251.43
      RetinexFormer24.170.89520.136752.495551.89
      FECNet23.370.88780.147753.094051.96
      LCDPNet23.110.87160.167353.716051.75
      Proposed24.720.90110.123553.464752.41
    • Table 2. Quantitative experimental results of each method on LCDP dataset

      View table

      Table 2. Quantitative experimental results of each method on LCDP dataset

      MethodLCDP
      PSNR /dBSSIMLPIPSMUSIQ
      EnlightenGAN17.090.73190.228055.4900
      Zero-DCE12.600.65550.325751.8293
      CLIP-LIT19.160.74420.241057.9322
      SNR21.920.82480.141454.8327
      DLEN22.370.84450.133156.7653
      RetinexFormer23.250.85880.105955.4696
      FECNet23.200.84580.122855.4887
      LCDPNet23.240.84210.136856.4228
      Proposed23.970.87110.091856.8421
    • Table 3. Computational efficiency and performance of different methods

      View table

      Table 3. Computational efficiency and performance of different methods

      MethodParameter/10-6FLOPs/10-9Runtime/msPSNRSSIM
      EnlightenGAN8.6465.7811.8617.550.8421
      Zero-DCE0.0820.764.0517.660.8229
      CLIP-LIT0.2872.8216.0121.570.8618
      SNR39.1295.8316.7422.500.8704
      DLEN1.3437.0616.8123.410.8861
      RetinexFormer1.6168.0755.4224.170.8952
      FECNet0.1523.2632.0623.370.8878
      LCDPNet0.285.3436.6923.110.8716
      Proposed2.8443.9717.2424.720.9011
    • Table 4. Ablation results on network and loss function

      View table

      Table 4. Ablation results on network and loss function

      VariantIbCond-NetDEBLossMetric
      Backlit branchFront-lit branchBMAMCALperLSSIMPSNR /dBSSIM
      Baseline22.300.8786
      N123.190.8904
      N223.410.8914
      N323.390.8929
      N424.360.8954
      N524.520.8961
      N624.700.8976
      Full model24.720.9011
    Tools

    Get Citation

    Copy Citation Text

    Fenggang Han, Kan Chang, Shucheng Xia, Xuxin Tai. Attention Mechanism-Based Backlight Image Enhancement[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2237006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Mar. 1, 2024

    Accepted: Mar. 29, 2024

    Published Online: Nov. 20, 2024

    The Author Email: Kan Chang (pandack0619@163.com)

    DOI:10.3788/LOP240782

    CSTR:32186.14.LOP240782

    Topics