Laser & Optoelectronics Progress, Volume. 61, Issue 22, 2237006(2024)
Attention Mechanism-Based Backlight Image Enhancement
Fig. 4. Enhanced images obtained by each method on BAID dataset. (a) Input image; (b) EnlightenGAN; (c) Zero-DCE; (d) CLIP-LIT; (e) SNR; (f) RetinexFormer; (g) FECNet; (h) LCDPNet; (i) proposed; (j) GT
Fig. 5. Enhanced images obtained by each method on Backlit300 dataset. (a) Input image; (b) EnlightenGAN; (c) Zero-DCE; (d) CLIP-LIT; (e) SNR; (f) RetinexFormer; (g) FECNet; (h) LCDPNet; (i) DLEN; (j) proposed
Fig. 6. Enhanced images obtained by each method on LCDP dataset. (a) Input image; (b) EnlightenGAN; (c) Zero-DCE; (d) CLIP-LIT; (e) SNR; (f) RetinexFormer; (g) FECNet; (h) LCDPNet; (i) proposed; (j) GT
|
|
|
|
Get Citation
Copy Citation Text
Fenggang Han, Kan Chang, Shucheng Xia, Xuxin Tai. Attention Mechanism-Based Backlight Image Enhancement[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2237006
Category: Digital Image Processing
Received: Mar. 1, 2024
Accepted: Mar. 29, 2024
Published Online: Nov. 20, 2024
The Author Email: Kan Chang (pandack0619@163.com)
CSTR:32186.14.LOP240782