Opto-Electronic Advances, Volume. 8, Issue 2, 240182(2025)

Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system

Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, and Jie Zhang*
Author Affiliations
  • The Key Laboratory of Optoelectronic Technology & System, Education Ministry of China, Chongqing University, Chongqing 400044, China
  • show less
    References(45)

    [1] GQ Li, X Zhao, X Tang et al. Wearable hydrogel SERS chip utilizing plasmonic trimers for uric acid analysis in sweat. Nano Lett, 24, 13447-13454(2024).

    [2] MSS Bharati, VR Soma. Flexible SERS substrates for hazardous materials detection: recent advances. Opto-Electron Adv, 4, 210048(2021).

    [3] MR Shao, C Ji, JB Tan et al. Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response. Opto-Electron Adv, 6, 230094(2023).

    [4] ZK Wang, HY Sha, Y Zhu et al. A compact device of optical fiber taper coupled monolayer silver nanoparticles for Raman enhancement. J Lightwave Technol, 42, 865-874(2024).

    [5] CL Lin, YY Li, YS Peng et al. Recent development of surface-enhanced Raman scattering for biosensing. J Nanobiotechnol, 21, 149(2023).

    [6] J Zhang, XL Zhang, SM Chen et al. Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles. Carbon, 100, 395-407(2016).

    [7] K Kim, H Lee, J Choi et al. Silver-coated dye-embedded silica beads: a core material of dual tagging sensors based on fluorescence and Raman scattering. ACS Appl Mater Interfaces, 3, 324-330(2011).

    [8] JM Chen, YJ Huang, P Kannan et al. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem, 88, 2149-2155(2016).

    [9] LL He, T Chen, TP Labuza. Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy. Food Chem, 148, 42-46(2014).

    [10] JP Yuan, YC Lai, JL Duan et al. Synthesis of a β-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs. J Colloid Interface Sci, 365, 122-126(2012).

    [11] JF Li, YF Huang, Y Ding et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 464, 392-395(2010).

    [12] CK Muro, KC Doty, J Bueno et al. Vibrational spectroscopy: recent developments to revolutionize forensic science. Anal Chem, 87, 306-327(2015).

    [13] GM Whitesides. The origins and the future of microfluidics. Nature, 442, 368-373(2006).

    [14] P Yager, T Edwards, E Fu et al. Microfluidic diagnostic technologies for global public health. Nature, 442, 412-418(2006).

    [15] XL Yuan, T Darcie, ZY Wei et al. Microchip imaging cytometer: making healthcare available, accessible, and affordable. Opto-Electron Adv, 5, 210130(2022).

    [16] MM Wang, E Tu, DE Raymond et al. Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol, 23, 83-87(2005).

    [17] JM Zhu, XQ Zhu, YF Zuo et al. Optofluidics: the interaction between light and flowing liquids in integrated devices. Opto-Electron Adv, 2, 190007(2019).

    [18] K Monisha, K Suresh, A Bankapur et al. Optically printed plasmonic fiber tip-assisted SERS-based chemical sensing and single biological cell studies. Anal Chim Acta, 1317, 342903(2024).

    [19] XH Wang, O Hofmann, R Das et al. Integrated thin-film polymer/fullerene photodetectors for on-chip microfluidic chemiluminescence detection. Lab Chip, 7, 58-63(2007).

    [20] MK Fan, PH Wang, C Escobedo et al. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of Nile blue A and oxazine 720. Lab Chip, 12, 1554-1560(2012).

    [21] S Bai, XL Ren, K Obata et al. Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip. Opto-Electron Adv, 5, 210121(2022).

    [22] H Bo, Y Ke, Z Yong et al. Microfluidic integrated D-shaped optical fiber SERS probe with high sensitivity and ability of multi-molecule detection. Opt Express, 31, 27304-27311(2023).

    [23] L Li, L Xiao, JH Wang et al. Movable electrowetting optofluidic lens for optical axial scanning in microscopy. Opto-Electron Adv, 2, 180025(2019).

    [24] N Sun, B Huang, ZY Lv et al. UV-catalyzed TiO2-based optofluidic SERS chip for three online strategies: fabrication, detection, and self-cleaning. Anal Chem, 96, 9104-9112(2024).

    [25] JA Huang, YL Zhang, H Ding et al. SERS-enabled lab-on-a-chip systems. Adv Opt Mater, 3, 618-633(2015).

    [26] K Oliveira, A Teixeira, JM Fernandes et al. Multiplex SERS phenotyping of single cancer cells in microdroplets. Adv Opt Mater, 11, 2201500(2023).

    [27] R Na, W Xing, G Yuan et al. Optofluidic SERS based on Ag nanocubes with high sensitivity for detecting a prevalent water pollutant. Opt Lett, 49, 2689-2692(2024).

    [28] YL Deng, YJ Juang. Electrokinetic trapping and surface enhanced Raman scattering detection of biomolecules using optofluidic device integrated with a microneedles array. Biomicrofluidics, 7, 014111(2013).

    [29] H Chon, C Lim, SM Ha et al. On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem, 82, 5290-5295(2010).

    [30] LY Zhao, YL Wang, ST Jin et al. Rational electrochemical design of hierarchical microarchitectures for SERS sensing applications. Nat Synth, 3, 867-877(2024).

    [31] XY Chen, QQ Ding, C Bi et al. Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection. Nat Commun, 13, 7807(2022).

    [32] A Ashkin. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett, 24, 156-159(1970).

    [33] A Ashkin. Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci USA, 94, 4853-4860(1997).

    [34] DG Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [35] K Dholakia, P Reece. Optical micromanipulation takes hold. Nano Today, 1, 18-27(2006).

    [36] A Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J, 61, 569-582(1992).

    [37] L Bosanac, T Aabo, PM Bendix et al. Efficient optical trapping and visualization of silver nanoparticles. Nano Lett, 8, 1486-1491(2008).

    [38] HB Xin, BJ Li. Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber. Opt Express, 19, 13285-13290(2011).

    [39] F Svedberg, ZP Li, HX Xu et al. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett, 6, 2639-2641(2006).

    [40] LM Tong, M Righini, MU Gonzalez et al. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab Chip, 9, 193-195(2009).

    [41] F Svedberg, M Käll. On the importance of optical forces in surface-enhanced Raman scattering (SERS). Faraday Discuss, 132, 35-44(2006).

    [42] A Ashkin, JM Dziedzic, JE Bjorkholm et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett, 11, 288-290(1986).

    [43] HB Xin, XM Li, BJ Li. Massive photothermal trapping and migration of particles by a tapered optical fiber. Opt Express, 19, 17065-17074(2011).

    [44] HB Xin, HX Lei, Y Zhang et al. Photothermal trapping of dielectric particles by optical fiber-ring. Opt Express, 19, 2711-2719(2011).

    [45] Y Harada, T Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun, 124, 529-541(1996).

    Tools

    Get Citation

    Copy Citation Text

    Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang. Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system[J]. Opto-Electronic Advances, 2025, 8(2): 240182

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 2, 2024

    Accepted: Dec. 12, 2024

    Published Online: May. 12, 2025

    The Author Email: Jie Zhang (JZhang)

    DOI:10.29026/oea.2025.240182

    Topics