Acta Optica Sinica, Volume. 45, Issue 8, 0815004(2025)

Cascaded Point Cloud Segmentation Algorithm for Unstructured Environments Based on LiDAR for Autonomous Vehicles

Xiujian Yang, Jialong Huang, Shengbin Zhang*, and Haicheng Xiao
Author Affiliations
  • Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan , China
  • show less
    Figures & Tables(16)
    Schematic diagram of the cascaded point cloud segmentation algorithm principle
    Schematic diagram of point cloud distortion correction
    Point cloud data distribution and grid model division. (a) Uniform polar coordinate grid; (b) point cloud quantity distribution; (c) DCZM model
    Schematic diagram of local ground estimation iteration. (a) Initial ground; (b) the first iteration; (c) the second iteration; (d) the third iteration
    Top-down schematic diagram of 3D voxel clustering based on spherical coordinates. (a) Original point cloud; (b) Hash table construction; (c) neighboring point search of adjacent voxels; (d) point cloud clustering
    3D point cloud clustering process based on eigenvalue and normal vector angle constraints
    All-terrain autonomous vehicle
    Experimental environment for the all-terrain autonomous vehicle
    Comparison test of ground point cloud segmentation on the Semantic KITTI dataset. (a) LineFit algorithm; (b) GPF algorithm; (c) Patchwork algorithm; (d) Patchwork++ algorithm; (e) proposed algorithm
    Comparison test of non-ground point cloud segmentation on the Semantic KITTI dataset. (a) Adaptive_Clustering algorithm; (b) CVC algorithm; (c) Travel algorithm; (d) proposed algorithm
    Ground point cloud segmentation algorithm test in real-world environment. (a) Front camera image of the all-terrain autonomous vehicle; (b) LineFit algorithm; (c) GPF algorithm; (d) Patchwork algorithm; (e) Patchwork++ algorithm; (f) proposed algorithm
    Above-ground object segmentation algorithm test in real-world environment. (a) Front camera image of the all-terrain autonomous vehicle; (b) Adaptive_Clustering algorithm; (c) CVC algorithm; (d) Travel algorithm; (e) proposed algorithm
    • Table 1. Ground point cloud segmentation algorithm

      View table

      Table 1. Ground point cloud segmentation algorithm

      Input: cloud_points
      Output: ground_points, nonground_points
      1 DCZM (cloud_points)
      2 for i=0 to num_patches do in parallel
      3 for i=r.begin() to r.end() do
      4 extract_initial_seeds_(zone_idx, src, ground_tmp)
      5 for i=0 to num_iter_-1 do
      6 estimate_plane_(ground_tmp, feat)
      7 ground_tmp. clear();
      8 initialize a matrix points(N, 3)
      9 for j=0 to N-1 do
      10 set points(j, :)←src[j].getV ector3fMap()
      11 result ← points ∗ feat.normal_
      12 for r=0 to N-1 do
      13 if i< num_iter_-1 then
      14 if result[r] < feat.th_dist_d_ then
      15 add src[r] to ground_tmp
      16 else
      17 if result[r] < feat.th_dist_d_ then
      18 add src[r] to ground_points
      19 else
      20 add src[r] to nonground_points
    • Table 2. Key parameters of the proposed method

      View table

      Table 2. Key parameters of the proposed method

      NotationNp,m

      τd /

      m

      Δρ /

      m

      Δθ /

      rad

      Δϕ /

      rad

      θth /

      rad

      w
      Value{600,100,50,30}0.1250.70.351.40.2620.65
    • Table 3. Evaluation of ground point cloud segmentation

      View table

      Table 3. Evaluation of ground point cloud segmentation

      SequenceMethodPrecision /%Recall /%Accuracy /%F1 scoreTime /ms
      01LineFit98.51±0.122275.22±0.578784.95±0.41240.85±0.0039198.51±2.3533
      GPF90.63±0.397167.98±1.490876.40±1.18100.74±0.0125127.25±0.5959
      Patchwork92.95±0.478091.50±0.216089.44±0.20970.92±0.001610.31±0.2263
      Patchwork++96.88±0.170987.36±0.312991.64±0.24670.91±0.002122.68±0.56
      Our95.71±0.187389.43±0.262390.01±0.21020.93±0.00189.57±0.2145
      09LineFit97.11±0.143081.94±0.747890.41±0.50970.89±0.0046195.94±3.3923
      GPF94.23±1.35488.71±0.431692.27±0.30330.91±0.03024.11±0.2977
      Patchwork89.44±4.124194.16±0.167691.70±0.11220.92±0.00118.42±0.0397
      Patchwork++90.74±0.187093.95±0.139193.05±0.93030.92±0.001017.67±0.3215
      Our92.62±0.126092.63±0.184592.71±0.10460.93±0.00905.30±0.0614
      10LineFit96.26±0.785979.28±0.513692.44±0.35440.87±0.0033160.61±2.7992
      GPF87.24±0.304987.36±0.400092.64±0.25780.87±0.002727.41±0.5875
      Patchwork84.65±0.265390.34±0.372087.17±0.32370.88±0.00268.62±0.3977
      Patchwork++83.82±0.469893.22±0.205792.98±0.23240.88±0.003115.05±0.1612
      Our91.34±0.152389.08±0.357189.54±0.32130.90±0.00225.83±0.0735
    • Table 4. Evaluation of above-ground object segmentation

      View table

      Table 4. Evaluation of above-ground object segmentation

      SequenceMethodSegmentation entropyScene accuracyTime /ms
      01Adaptive_Clustering0.0152±0.00130.3410±0.009211.97±0.5236
      CVC0.0667±0.00100.8771±0.006049.77±0.8310
      Travel0.1542±0.00730.6212±0.010323.98±0.6069
      Our0.1104±0.00170.9037±0.003619.48±0.2563
      09Adaptive_Clustering0.0087±0.00050.6365±0.0130108.80±1.6532
      CVC0.2088±0.01490.8457±0.006731.97±0.7346
      Travel0.1276±0.00250.6593±0.006632.68±0.5571
      Our0.1521±0.00360.8900±0.004620.31±0.4174
      10Adaptive_Clustering0.0160±0.00020.6304±0.005413.93±0.4072
      CVC0.1235±0.00340.7873±0.0048102.04±0.8200
      Travel0.2092±0.00520.6650±0.006797.85±0.8225
      Our0.1177±0.00110.8421±0.004972.46±0.7737
    Tools

    Get Citation

    Copy Citation Text

    Xiujian Yang, Jialong Huang, Shengbin Zhang, Haicheng Xiao. Cascaded Point Cloud Segmentation Algorithm for Unstructured Environments Based on LiDAR for Autonomous Vehicles[J]. Acta Optica Sinica, 2025, 45(8): 0815004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jan. 3, 2025

    Accepted: Feb. 28, 2025

    Published Online: Apr. 27, 2025

    The Author Email: Shengbin Zhang (zhangshengbin@kust.edu.cn)

    DOI:10.3788/AOS250431

    CSTR:32393.14.AOS250431

    Topics