APPLIED LASER, Volume. 43, Issue 2, 47(2023)

Topological Optimization and Laser Additive Manufacturing of the Humanoid Robot Calf

Pan Lu1,2、*, Zhang Henghua1, Liu Tong3, Nie Daming4, Sun Xiaoyun3, Pi Zhongquan5, and Zhang Mei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    References(13)

    [7] [7] GU D D, SHI X Y, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545): eabg1487.

    [15] [15] XU Y L, ZHANG D Y, ZHOU Y, et al. Study on topology optimization design, manufacturability, and performance evaluation of Ti-6Al-4V porous structures fabricated by selective laser melting (SLM)[J]. Materials (Basel, Switzerland), 2017, 10(9): 1048.

    [16] [16] XIAO Z F, YANG Y Q, WANG D, et al. Structural optimization design for antenna bracket manufactured by selective laser melting[J]. Rapid Prototyping Journal, 2018, 24(3): 539-547.

    [17] [17] LPEZ-CASTRO J D, MARCHAL A, GONZLEZ L, et al. Topological optimization and manufacturing by Direct Metal Laser Sintering of an aeronautical part in 15-5PH stainless steel[J]. Procedia Manufacturing, 2017, 13: 818-824.

    [19] [19] SAADLAOUI Y, MILAN J L, ROSSI J M, et al. Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes[J]. Journal of Manufacturing Systems, 2017, 43: 178-186.

    [20] [20] SEABRA M, AZEVEDO J, ARAU′JO A, et al. Selective laser melting (SLM) and topology optimization for lighter aerospace componentes[J]. Procedia Structural Integrity, 2016, 1: 289-296.

    [21] [21] PCURAR R, PCURAR A. Topology optimization of an airplane component to be made by selective laser melting technology[J]. Applied Mechanics and Materials, 2015, 808: 181-186.

    [22] [22] XIAO D M, YANG Y Q, SU X B, et al. Topology optimization of microstructure and selective laser melting fabrication for metallic biomaterial scaffolds[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(10): 2554-2561.

    [25] [25] GU D D, MA C L, XIA M J, et al. A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing[J]. Engineering, 2017, 3(5): 220-239.

    [26] [26] PAN L, ZHANG C L, LIU T, et al. Molten pool structure and temperature flow behavior of green-laser powder bed fusion pure copper[J]. Materials Research Express, 2022, 9(1): 016504.

    [28] [28] PAN L, ZHANG C L, LIU T, et al. Mesoscopic numerical simulation and experimental investigation of laser powder bed fusion AlCu5MnCdVA alloys[J]. Materials Research Express, 2021, 8(12): 126525.

    [29] [29] KRNER C, ATTAR E, HEINL P. Mesoscopic simulation of selective beam melting processes[J]. Journal of Materials Processing Technology, 2011, 211(6): 978-987.

    [30] [30] QIU C L, PANWISAWAS C, WARD M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia, 2015, 96: 72-79.

    Tools

    Get Citation

    Copy Citation Text

    Pan Lu, Zhang Henghua, Liu Tong, Nie Daming, Sun Xiaoyun, Pi Zhongquan, Zhang Mei. Topological Optimization and Laser Additive Manufacturing of the Humanoid Robot Calf[J]. APPLIED LASER, 2023, 43(2): 47

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 25, 2022

    Accepted: --

    Published Online: Mar. 30, 2023

    The Author Email: Lu Pan (ahjdpanlu@126.com)

    DOI:10.14128/j.cnki.al.20234302.047

    Topics