Optical Technique, Volume. 49, Issue 4, 436(2023)

Review on phase demodulation methods of fringe projection based on frequency domain analysis

GAO Nan, ZHANG Can, MENG Zhaozong, and ZHANG Zonghua
Author Affiliations
  • [in Chinese]
  • show less
    References(92)

    [1] [1] Prusak A, Melnychuk O, Roth H, et al. Pose estimation and map building with a Time-Of-Flight camera for robot navigation[J]. International Journal of Intelligent Systems Technologies and Applications,2008,5(3/4):355-364.

    [2] [2] Foix S, Alenya G, Torras C. Lock-in time-of-flight (ToF) cameras: a survey[J]. IEEE Sensors Journal,2011,11(9):1917-26.

    [3] [3] Selami Y, Tao W, Gao Q, et al. A scheme for enhancing precision in 3-dimensional positioning for non-Contact measurement systems based on laser triangulation[J]. Sensors,2018,18(2):504.

    [4] [4] Sam V, Dirckx J. Real-time structured light profilometry: a review[J]. Optics and Lasers in Engineering,2016,87:18-31.

    [5] [5] Geng J, Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics,2011,3(2):128-160.

    [7] [7] Zhang Z H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques[J]. Optics and Lasers in Engineering,2012,50(8):1097-1106.

    [8] [8] Huang L, Qian K M, Pan B, et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry[J]. Optics and Lasers in Engineering,2010,48(2):141-148.

    [9] [9] Gorthi S S, Rastogi P. Fringe projection techniques: Whither we are[J]. Optics and Lasers in Engineering,2010,48(2):133-140.

    [10] [10] Wang J H, Yang Y X. Phase extraction accuracy comparison based on multi-frequency phase-shifting method in fringe projection profilometry[J]. Measurement,2022,199:111525.

    [11] [11] Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects[J]. Applied Optics,1984,23(18):3105-3108.

    [12] [12] Halioua M, Krishnamurthy R S, Liu H C, et al. Automated 360°profilometry of 3D diffuse objects[J]. Applied Optics,1985,24(14):2193-2196.

    [13] [13] Zuo C, Feng S J, Huang L, et al. Phase shifting algorithms for fringe projection profilometry: A review[J]. Optics and Lasers in Engineering,2018,109:23-59.

    [14] [14] Liu Y, Huang D F, Jiang Y. An error-reduction mothod for temporal phase unwrapping based on double three-step phase-shifting and least-squares fitting[C]//Proceedings of 2012 3rd International Conference on Information Technology for Manufacturing Systems(ITMS 2012 Ⅲ), Qingdao, China: ITMS,2012:93-98.

    [15] [15] Hariharan P, Oreb B, Eiju T. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm[J]. Applied Optics,1987,26(13):2504-2506.

    [16] [16] Mo J H, Gao J, Zheng Z J, et al. Robust composite sine-trapezoidal phase-shifting algorithm for nonlinear intensity[J]. Optics and Lasers in Engineering,2020,128:106048.

    [17] [17] Li B Y, Tang C, Zhu X J, et al. Shearlet transform for phase extraction in fringe projection profilometry with edges discontinuity[J]. Optics and Lasers in Engineering,2016,78:91-98.

    [18] [18] Liu Y P, Du G L, Zhang C R, et al. An improved two-step phase-shifting profilometry[J]. Optik,2016,127(1):288-291.

    [19] [19] Takeda M, Mutoh K. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America,1982,72(1):156-160.

    [20] [20] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics,1983,22(24):3977-3982.

    [21] [21] Song K C, Hu S P, Wen X, et al. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping[J]. Optics and Lasers in Engineering,2016,84:74-81.

    [22] [22] Li S K, Su X Y, Chen W J, et al. Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition[J]. Journal of the Optical Society of America A-Optics Image Science and Vision,2009,26(5):1195-1201.

    [23] [23] Su X Y, Chen W J. Fourier transform profilometry: a review[J]. Optics and Lasers in Engineering,2001,35(5):263-284.

    [24] [24] Qian J M, Tao T Y, Feng S J, et al. Motion-artifact-free dynamic 3D shape measurement with hybrid Fourier-transform phase-shifting profilometry[J]. Optics Express,2019,27(3):2713-2731.

    [27] [27] Mallat S. A wavelet tour of signal processing, Third edition: The sparse way[M]. Burlington: Academic Press,2008:14-21.

    [28] [28] Zhang Z H, Jing Z, Wang Z H, et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase calculation at discontinuities in fringe projection profilometry[J]. Optics and Lasers in Engineering,2012,50(8):1152-1160.

    [29] [29] Xu J, Zhang S. Status, challenges, and future perspectives of fringe projection profilometry[J]. Optics and Lasers in Engineering,2020,135:106193.

    [30] [30] Mateo C, Talavera J A. Short-time Fourier transform with the window size fixed in the frequency domain[J]. Digital Signal Processing,2018,77:13-21.

    [31] [31] Pokorski K, Patorski K. Separation of complex fringe patterns using two-dimensional continuous wavelet transform[J]. Applied Optics,2012,51(35):8433-8439.

    [32] [32] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences,1998,454(1971):903-995.

    [33] [33] Yang Z H, Zhang Q, Zhou F, et al. Hilbert spectrum analysis of piecewise stationary signals and its application to texture classification[J]. Digital Signal Processing,2018,82:1-10.

    [34] [34] Yang Z J, Yang L H. The structures of some typical intrinsic mode functions[J]. Mathematical Methods in the Applied Sciences,2012,35(17):2075-2084.

    [35] [35] Zhang Q C, Cao Y P. Fourier transform profilometry of a single-field fringe for dynamic objects using an interlaced scanning camera[J]. Optics Communications,2016,367:130-136.

    [36] [36] Wongjarern J, Widjaja J, Chuamchaitrakool P, et al. Non-phase-shifting Fourier transform profilometry using single grating pattern and object image[J]. Optik - International Journal for Light and Electron Optics,2016,127(19):7565-7571.

    [37] [37] Feng S, Chen Q, Zuo C, et al. A carrier removal technique for Fourier transform profilometry based on principal component analysis[J]. Optics and Lasers in Engineering,2015,74:80-86.

    [38] [38] Li B W, An Y T, Zhang S. Single-shot absolute 3D shape measurement with Fourier transform profilometry[J]. Applied Optics,2016,55(19):5219-5225.

    [39] [39] Shang W, Liu J, Ji X H. Study on influential factors of measurement precision using Fourier transform profilometry[J]. Optik,2018,159:133-142.

    [40] [40] Zhang S. High-speed 3D shape measurement with structured light methods: A review[J]. Optics and Lasers in Engineering,2018,106:119-131.

    [41] [41] Su X Y, Li J, Guo L R, et al. An Improved Fourier Transform Profilometry[J]. International Society for Optics and Photonics,1989,954:32-35.

    [42] [42] Li J, Su X Y, Guo L R. An improved Fourier transform profilometry for automatic measurement of 3-D object shapes[J]. Optical Engineering,1990,29(12):1439-1444.

    [44] [44] Guan C, Hassebrook L G, Lau D L. Composite structured light pattern for three-dimensional video[J]. Optics Express,2003,11(5):406-417.

    [45] [45] Chen H J, Zhang J, Fang J. Surface height retrieval based on fringe shifting of color-encoded structured light pattern[J]. Optics Letters,2008,33:1801-1803.

    [46] [46] Chen W J, Su X Y, Cao Y P. Improving Fourier transform profilometry based on bicolor fringe pattern[J]. Optical Engineering,2004,43(1):192-198.

    [47] [47] Da F P, Huang H. A novel color fringe projection based Fourier transform 3D shape measurement method[J]. Optik,2012,123(24):2233-2237.

    [48] [48] Luo F, Chen W J, Su X Y. Eliminating zero spectra in Fourier transform profilometry by application of Hilbert transform[J]. Optics Communications,2016,365:76-85.

    [49] [49] Ayubi G A, Di Martino J M, Alonso J R, et al. Color encoding of binary fringes for gamma correction in 3-D profiling[J]. Optics Letters,2012,37(8):1325-1327.

    [50] [50] Fu Y J, Wu J F, Jiang G Y. Fourier transform profilometry based on defocusing[J]. Optics and Laser Technology,2012,44(4):727-733.

    [51] [51] Zhong J G, Weng J W. Dilating Gabor transform for the fringe analysis of 3-D shape measurement[J]. Optical Engineering,2004,43(4):895-899.

    [53] [53] Qian K M. Windowed Fourier transform for fringe pattern analysis[J]. Applied Optics,200443(13):2695-2702.

    [54] [54] Qian K M, Wang H X, Gao W J. Windowed Fourier transform for fringe pattern analysis: theoretical analyses[J]. Applied Optics,2008,47(29):5408-5419.

    [55] [55] Qian K M. Two-dimensional windowed Fourier transform for fringe pattern analysis:Principles,applications and implementations[J].Optics and Lasers in Engineering,2007,45(2):304-317.

    [56] [56] Dehaeck S, Colinet P. Improving speed and precision of local frequency analysis using Gaussian ridge interpolation for wavelet and windowed Fourier ridge algorithms[J]. Optics and Lasers in Engineering,2016,77:54-63.

    [57] [57] Fernandez S, Gdeisat M A, Salvi J, et al. Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets[J]. Optics Communications,2011,284(12):2797-2807.

    [58] [58] Qian K M. On window size selection in the windowed Fourier ridges algorithm: Addendum[J]. Optics and Lasers in Engineering,2007,45(12):1193-1195.

    [59] [59] Gao W J, Qian K M, Wang H X, et al. Parallel computing for fringe pattern processing: A multicore CPU approach in MATLAB environment[J]. Optics and Lasers in Engineering,2009,47(11):1286-1292.

    [61] [61] Kohei Yatabe, Yasuhiro Oikawa. Convex optimization-based windowed Fourier filtering with multiple windows for wrapped-phase denoising[J]. Applied Optics,2016,55(17):4632-4641.

    [62] [62] Chen W J, Shen Q J, Zhong M. Comparison of 2D s-transform profilometry and 2D windowed fourier transform profilometry[J]. Optik,2013,124(24):6732-6736.

    [63] [63] Ri S, Agarwal N, Wang Q, et al. Comparative study of sampling moiré and windowed Fourier transform techniques for demodulation of a single-fringe pattern[J]. Applied Optics,2018,57(36):10402-10411.

    [64] [64] Agarwal N, Wang C X, Qian K M. Windowed Fourier ridges for demodulation of carrier fringe patterns with nonlinearity: a theoretical analysis[J]. Applied Optics,2018,57(21):6198-6206.

    [65] [65] Qian K M. Applications of windowed Fourier fringe analysis in optical measurement: A review[J]. Optics and Lasers in Engineering,2015,66:67-73.

    [66] [66] Zhong J G, Zeng H P. Multiscale windowed Fourier transform for phase extraction of fringe patterns[J]. Applied Optics,2007,46(14):2670-2675.

    [67] [67] Wang C X, Da F P. Phase demodulation using adaptive windowed Fourier transform based on Hilbert-Huang transform[J]. Optics Express,2012,20(16):18459-18477.

    [68] [68] Watkins L R. Review of fringe pattern phase recovery using the 1-D and 2-D continuous wavelet transforms[J]. Optics and Lasers in Engineering,2012,50(8):1015-1022.

    [69] [69] Zhong J G, Weng J W. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry[J]. Applied Optics,2004,43(26):4993-4998.

    [70] [70] Watkins L R. Phase recovery from fringe patterns using the continuous wavelet transform[J]. Optics and Lasers in Engineering,2007,45(2):298-303.

    [71] [71] Xu Y, Jia S H, Bao Q C, et al. Recovery of absolute height from wrapped phase maps for fringe projection profilometry[J]. Optics Express,2014,22(14):16819-16828.

    [72] [72] Jiang C, Jia S H, Dong J, et al. Multi-frequency fringe projection profilometry based on wavelet transform[J]. Optics Express,2016,24(11):11323-11333.

    [73] [73] Zhong M, Chen F, Xiao C, et al. 3-D surface profilometry based on modulation measurement by applying wavelet transform method[J]. Optics and Lasers in Engineering,2017,88:243-254.

    [74] [74] Watkins L R. Review of fringe pattern phase recovery using the 1-D and 2-D continuous wavelet transforms[J]. Optics and Lasers in Engineering,2012,50(8):1015-1022.

    [75] [75] Bahich M, Bailich M, Imloul A, et al. A comparative study of one and two-dimensional wavelet-based techniques for noisy fringe patterns analysis[J]. Optics Communications,2013,290:43-48.

    [76] [76] Wang Z Y, Ma J, Vo M. Recent progress in two-dimensional continuous wavelet transform technique for fringe pattern analysis[J]. Optics and Lasers in Engineering,2012,50(8):1052-1058.

    [77] [77] Ma J, Wang Z Y, Vo M. Hybrid two-dimensional continuous wavelet transform for analysis of phase-shifted interferograms[J]. Optics and Lasers in Engineering,2012,285(19):3917-3970.

    [78] [78] Han M Q, Chen W J. Two-dimensional complex wavelet with directional selectivity used in fringe projection profilometry[J]. Optics Letters,2021,46(15):3653-3656.

    [79] [79] Souza de U B, Escola J P L, Cunha Brito de L. A survey on Hilbert-Huang transform: Evolution, challenges and solutions[J]. Digital Signal Processing,2022,120:103292.

    [80] [80] Zhou Y, Li H G. A denoising scheme for DSPI fringes based on fast bi-dimensional ensemble empirical mode decomposition and BIMF energy estimation[J]. Mechanical Systems & Signal Processing,2013,35(1-2):369-382.

    [81] [81] Bernini M B, Federico A, Kaufmann G H. Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform[J]. Applied Optics,2009,48(36):6862-6869.

    [82] [82] Wang C X, Da F P. Researches of optical fringe pattern analysis based on EMD algorithms[J]. Infrared and Laser Engineering,2020,49(3):0303013-0303013-11.

    [83] [83] Bhuiyan S, Adhami R R, Khan J. Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation[J]. EURASIP Journal on Advances in Signal Processing,2008,164:1-18.

    [84] [84] Trusiak M, Patorski K, Wielgus M. Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform[J]. Optics Express,2012,20(21):23463-23479.

    [85] [85] Trusiak M, Wielgus M, Patorski K. Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition[J]. Optics and Lasers in Engineering,2014,52:230-240.

    [86] [86] Trusiak M, Sluzewski L, Patorski K. Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis[J]. Optics Express,2016,24(4):4221-4238.

    [87] [87] Goc?owski P, Trusiak M, Ahmad A, et al. Automatic fringe pattern enhancement using truly adaptive period-guided bidimensional empirical mode decomposition[J]. Optics Express,2020,28(5):6277-6293.

    [88] [88] Goc?owski P, Cywińska M, Ahmad A, et al. Single-shot fringe pattern phase retrieval using improved period-guided bidimensional empirical mode decomposition and Hilbert transform[J]. Optics Express,2021,29(20):31632-31649.

    [89] [89] Li S K, Su X Y, Chen W J. Hilbert assisted wavelet transform method of optical fringe pattern phase reconstruction for optical profilometry and interferometry[J]. Optik,2012,123(1):6-10.

    [90] [90] Wu Z, Huang N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41.

    [91] [91] Zhou Y, Li H. Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition[J]. Optics Express,2011,19(19):18207-18215.

    [92] [92] Rehman N, Park C, Huang N.E, et al. EMD via MEMD: Multivariate noise-aided computation of standard EMD[J]. Advances in Adaptive Data Analysis,2013,5(2):1-25.

    [93] [93] Colominas M A, Schlotthauer G, Torres M E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomed Signal Process Control,2014,14:19-29.

    [94] [94] Zhou X, Podoleanu A G, Yang Z Q, et al. Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns[J]. Optics Express,2012,20(22):24247-24262.

    [95] [95] Wang C X, Qian K M, Da F P. Automatic fringe enhancement with novel bidimensional sinusoids-assisted empirical mode decomposition[J]. Optics Express,2017,25(20):24299-24311.

    [96] [96] Feng S J, Chen Q, Tao T Y, et al. Fringe pattern analysis using deep learning[J]. Advanced Photonics,2019,1(2):025001.

    [97] [97] Shi J S, Zhu X J, Wang H Y. Label enhanced and patch based deep learning for phase retrieval from single frame fringe pattern in fringe projection 3D measurement[J]. Optics Express,2019,27(20):28929.

    Tools

    Get Citation

    Copy Citation Text

    GAO Nan, ZHANG Can, MENG Zhaozong, ZHANG Zonghua. Review on phase demodulation methods of fringe projection based on frequency domain analysis[J]. Optical Technique, 2023, 49(4): 436

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 2, 2023

    Accepted: --

    Published Online: Jan. 4, 2024

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics