Optical Technique, Volume. 49, Issue 4, 436(2023)
Review on phase demodulation methods of fringe projection based on frequency domain analysis
[1] [1] Prusak A, Melnychuk O, Roth H, et al. Pose estimation and map building with a Time-Of-Flight camera for robot navigation[J]. International Journal of Intelligent Systems Technologies and Applications,2008,5(3/4):355-364.
[2] [2] Foix S, Alenya G, Torras C. Lock-in time-of-flight (ToF) cameras: a survey[J]. IEEE Sensors Journal,2011,11(9):1917-26.
[3] [3] Selami Y, Tao W, Gao Q, et al. A scheme for enhancing precision in 3-dimensional positioning for non-Contact measurement systems based on laser triangulation[J]. Sensors,2018,18(2):504.
[4] [4] Sam V, Dirckx J. Real-time structured light profilometry: a review[J]. Optics and Lasers in Engineering,2016,87:18-31.
[5] [5] Geng J, Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics,2011,3(2):128-160.
[7] [7] Zhang Z H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques[J]. Optics and Lasers in Engineering,2012,50(8):1097-1106.
[8] [8] Huang L, Qian K M, Pan B, et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry[J]. Optics and Lasers in Engineering,2010,48(2):141-148.
[9] [9] Gorthi S S, Rastogi P. Fringe projection techniques: Whither we are[J]. Optics and Lasers in Engineering,2010,48(2):133-140.
[10] [10] Wang J H, Yang Y X. Phase extraction accuracy comparison based on multi-frequency phase-shifting method in fringe projection profilometry[J]. Measurement,2022,199:111525.
[11] [11] Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects[J]. Applied Optics,1984,23(18):3105-3108.
[12] [12] Halioua M, Krishnamurthy R S, Liu H C, et al. Automated 360°profilometry of 3D diffuse objects[J]. Applied Optics,1985,24(14):2193-2196.
[13] [13] Zuo C, Feng S J, Huang L, et al. Phase shifting algorithms for fringe projection profilometry: A review[J]. Optics and Lasers in Engineering,2018,109:23-59.
[14] [14] Liu Y, Huang D F, Jiang Y. An error-reduction mothod for temporal phase unwrapping based on double three-step phase-shifting and least-squares fitting[C]//Proceedings of 2012 3rd International Conference on Information Technology for Manufacturing Systems(ITMS 2012 Ⅲ), Qingdao, China: ITMS,2012:93-98.
[15] [15] Hariharan P, Oreb B, Eiju T. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm[J]. Applied Optics,1987,26(13):2504-2506.
[16] [16] Mo J H, Gao J, Zheng Z J, et al. Robust composite sine-trapezoidal phase-shifting algorithm for nonlinear intensity[J]. Optics and Lasers in Engineering,2020,128:106048.
[17] [17] Li B Y, Tang C, Zhu X J, et al. Shearlet transform for phase extraction in fringe projection profilometry with edges discontinuity[J]. Optics and Lasers in Engineering,2016,78:91-98.
[18] [18] Liu Y P, Du G L, Zhang C R, et al. An improved two-step phase-shifting profilometry[J]. Optik,2016,127(1):288-291.
[19] [19] Takeda M, Mutoh K. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America,1982,72(1):156-160.
[20] [20] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics,1983,22(24):3977-3982.
[21] [21] Song K C, Hu S P, Wen X, et al. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping[J]. Optics and Lasers in Engineering,2016,84:74-81.
[22] [22] Li S K, Su X Y, Chen W J, et al. Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition[J]. Journal of the Optical Society of America A-Optics Image Science and Vision,2009,26(5):1195-1201.
[23] [23] Su X Y, Chen W J. Fourier transform profilometry: a review[J]. Optics and Lasers in Engineering,2001,35(5):263-284.
[24] [24] Qian J M, Tao T Y, Feng S J, et al. Motion-artifact-free dynamic 3D shape measurement with hybrid Fourier-transform phase-shifting profilometry[J]. Optics Express,2019,27(3):2713-2731.
[27] [27] Mallat S. A wavelet tour of signal processing, Third edition: The sparse way[M]. Burlington: Academic Press,2008:14-21.
[28] [28] Zhang Z H, Jing Z, Wang Z H, et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase calculation at discontinuities in fringe projection profilometry[J]. Optics and Lasers in Engineering,2012,50(8):1152-1160.
[29] [29] Xu J, Zhang S. Status, challenges, and future perspectives of fringe projection profilometry[J]. Optics and Lasers in Engineering,2020,135:106193.
[30] [30] Mateo C, Talavera J A. Short-time Fourier transform with the window size fixed in the frequency domain[J]. Digital Signal Processing,2018,77:13-21.
[31] [31] Pokorski K, Patorski K. Separation of complex fringe patterns using two-dimensional continuous wavelet transform[J]. Applied Optics,2012,51(35):8433-8439.
[32] [32] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences,1998,454(1971):903-995.
[33] [33] Yang Z H, Zhang Q, Zhou F, et al. Hilbert spectrum analysis of piecewise stationary signals and its application to texture classification[J]. Digital Signal Processing,2018,82:1-10.
[34] [34] Yang Z J, Yang L H. The structures of some typical intrinsic mode functions[J]. Mathematical Methods in the Applied Sciences,2012,35(17):2075-2084.
[35] [35] Zhang Q C, Cao Y P. Fourier transform profilometry of a single-field fringe for dynamic objects using an interlaced scanning camera[J]. Optics Communications,2016,367:130-136.
[36] [36] Wongjarern J, Widjaja J, Chuamchaitrakool P, et al. Non-phase-shifting Fourier transform profilometry using single grating pattern and object image[J]. Optik - International Journal for Light and Electron Optics,2016,127(19):7565-7571.
[37] [37] Feng S, Chen Q, Zuo C, et al. A carrier removal technique for Fourier transform profilometry based on principal component analysis[J]. Optics and Lasers in Engineering,2015,74:80-86.
[38] [38] Li B W, An Y T, Zhang S. Single-shot absolute 3D shape measurement with Fourier transform profilometry[J]. Applied Optics,2016,55(19):5219-5225.
[39] [39] Shang W, Liu J, Ji X H. Study on influential factors of measurement precision using Fourier transform profilometry[J]. Optik,2018,159:133-142.
[40] [40] Zhang S. High-speed 3D shape measurement with structured light methods: A review[J]. Optics and Lasers in Engineering,2018,106:119-131.
[41] [41] Su X Y, Li J, Guo L R, et al. An Improved Fourier Transform Profilometry[J]. International Society for Optics and Photonics,1989,954:32-35.
[42] [42] Li J, Su X Y, Guo L R. An improved Fourier transform profilometry for automatic measurement of 3-D object shapes[J]. Optical Engineering,1990,29(12):1439-1444.
[44] [44] Guan C, Hassebrook L G, Lau D L. Composite structured light pattern for three-dimensional video[J]. Optics Express,2003,11(5):406-417.
[45] [45] Chen H J, Zhang J, Fang J. Surface height retrieval based on fringe shifting of color-encoded structured light pattern[J]. Optics Letters,2008,33:1801-1803.
[46] [46] Chen W J, Su X Y, Cao Y P. Improving Fourier transform profilometry based on bicolor fringe pattern[J]. Optical Engineering,2004,43(1):192-198.
[47] [47] Da F P, Huang H. A novel color fringe projection based Fourier transform 3D shape measurement method[J]. Optik,2012,123(24):2233-2237.
[48] [48] Luo F, Chen W J, Su X Y. Eliminating zero spectra in Fourier transform profilometry by application of Hilbert transform[J]. Optics Communications,2016,365:76-85.
[49] [49] Ayubi G A, Di Martino J M, Alonso J R, et al. Color encoding of binary fringes for gamma correction in 3-D profiling[J]. Optics Letters,2012,37(8):1325-1327.
[50] [50] Fu Y J, Wu J F, Jiang G Y. Fourier transform profilometry based on defocusing[J]. Optics and Laser Technology,2012,44(4):727-733.
[51] [51] Zhong J G, Weng J W. Dilating Gabor transform for the fringe analysis of 3-D shape measurement[J]. Optical Engineering,2004,43(4):895-899.
[53] [53] Qian K M. Windowed Fourier transform for fringe pattern analysis[J]. Applied Optics,200443(13):2695-2702.
[54] [54] Qian K M, Wang H X, Gao W J. Windowed Fourier transform for fringe pattern analysis: theoretical analyses[J]. Applied Optics,2008,47(29):5408-5419.
[55] [55] Qian K M. Two-dimensional windowed Fourier transform for fringe pattern analysis:Principles,applications and implementations[J].Optics and Lasers in Engineering,2007,45(2):304-317.
[56] [56] Dehaeck S, Colinet P. Improving speed and precision of local frequency analysis using Gaussian ridge interpolation for wavelet and windowed Fourier ridge algorithms[J]. Optics and Lasers in Engineering,2016,77:54-63.
[57] [57] Fernandez S, Gdeisat M A, Salvi J, et al. Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets[J]. Optics Communications,2011,284(12):2797-2807.
[58] [58] Qian K M. On window size selection in the windowed Fourier ridges algorithm: Addendum[J]. Optics and Lasers in Engineering,2007,45(12):1193-1195.
[59] [59] Gao W J, Qian K M, Wang H X, et al. Parallel computing for fringe pattern processing: A multicore CPU approach in MATLAB environment[J]. Optics and Lasers in Engineering,2009,47(11):1286-1292.
[61] [61] Kohei Yatabe, Yasuhiro Oikawa. Convex optimization-based windowed Fourier filtering with multiple windows for wrapped-phase denoising[J]. Applied Optics,2016,55(17):4632-4641.
[62] [62] Chen W J, Shen Q J, Zhong M. Comparison of 2D s-transform profilometry and 2D windowed fourier transform profilometry[J]. Optik,2013,124(24):6732-6736.
[63] [63] Ri S, Agarwal N, Wang Q, et al. Comparative study of sampling moiré and windowed Fourier transform techniques for demodulation of a single-fringe pattern[J]. Applied Optics,2018,57(36):10402-10411.
[64] [64] Agarwal N, Wang C X, Qian K M. Windowed Fourier ridges for demodulation of carrier fringe patterns with nonlinearity: a theoretical analysis[J]. Applied Optics,2018,57(21):6198-6206.
[65] [65] Qian K M. Applications of windowed Fourier fringe analysis in optical measurement: A review[J]. Optics and Lasers in Engineering,2015,66:67-73.
[66] [66] Zhong J G, Zeng H P. Multiscale windowed Fourier transform for phase extraction of fringe patterns[J]. Applied Optics,2007,46(14):2670-2675.
[67] [67] Wang C X, Da F P. Phase demodulation using adaptive windowed Fourier transform based on Hilbert-Huang transform[J]. Optics Express,2012,20(16):18459-18477.
[68] [68] Watkins L R. Review of fringe pattern phase recovery using the 1-D and 2-D continuous wavelet transforms[J]. Optics and Lasers in Engineering,2012,50(8):1015-1022.
[69] [69] Zhong J G, Weng J W. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry[J]. Applied Optics,2004,43(26):4993-4998.
[70] [70] Watkins L R. Phase recovery from fringe patterns using the continuous wavelet transform[J]. Optics and Lasers in Engineering,2007,45(2):298-303.
[71] [71] Xu Y, Jia S H, Bao Q C, et al. Recovery of absolute height from wrapped phase maps for fringe projection profilometry[J]. Optics Express,2014,22(14):16819-16828.
[72] [72] Jiang C, Jia S H, Dong J, et al. Multi-frequency fringe projection profilometry based on wavelet transform[J]. Optics Express,2016,24(11):11323-11333.
[73] [73] Zhong M, Chen F, Xiao C, et al. 3-D surface profilometry based on modulation measurement by applying wavelet transform method[J]. Optics and Lasers in Engineering,2017,88:243-254.
[74] [74] Watkins L R. Review of fringe pattern phase recovery using the 1-D and 2-D continuous wavelet transforms[J]. Optics and Lasers in Engineering,2012,50(8):1015-1022.
[75] [75] Bahich M, Bailich M, Imloul A, et al. A comparative study of one and two-dimensional wavelet-based techniques for noisy fringe patterns analysis[J]. Optics Communications,2013,290:43-48.
[76] [76] Wang Z Y, Ma J, Vo M. Recent progress in two-dimensional continuous wavelet transform technique for fringe pattern analysis[J]. Optics and Lasers in Engineering,2012,50(8):1052-1058.
[77] [77] Ma J, Wang Z Y, Vo M. Hybrid two-dimensional continuous wavelet transform for analysis of phase-shifted interferograms[J]. Optics and Lasers in Engineering,2012,285(19):3917-3970.
[78] [78] Han M Q, Chen W J. Two-dimensional complex wavelet with directional selectivity used in fringe projection profilometry[J]. Optics Letters,2021,46(15):3653-3656.
[79] [79] Souza de U B, Escola J P L, Cunha Brito de L. A survey on Hilbert-Huang transform: Evolution, challenges and solutions[J]. Digital Signal Processing,2022,120:103292.
[80] [80] Zhou Y, Li H G. A denoising scheme for DSPI fringes based on fast bi-dimensional ensemble empirical mode decomposition and BIMF energy estimation[J]. Mechanical Systems & Signal Processing,2013,35(1-2):369-382.
[81] [81] Bernini M B, Federico A, Kaufmann G H. Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform[J]. Applied Optics,2009,48(36):6862-6869.
[82] [82] Wang C X, Da F P. Researches of optical fringe pattern analysis based on EMD algorithms[J]. Infrared and Laser Engineering,2020,49(3):0303013-0303013-11.
[83] [83] Bhuiyan S, Adhami R R, Khan J. Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation[J]. EURASIP Journal on Advances in Signal Processing,2008,164:1-18.
[84] [84] Trusiak M, Patorski K, Wielgus M. Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform[J]. Optics Express,2012,20(21):23463-23479.
[85] [85] Trusiak M, Wielgus M, Patorski K. Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition[J]. Optics and Lasers in Engineering,2014,52:230-240.
[86] [86] Trusiak M, Sluzewski L, Patorski K. Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis[J]. Optics Express,2016,24(4):4221-4238.
[87] [87] Goc?owski P, Trusiak M, Ahmad A, et al. Automatic fringe pattern enhancement using truly adaptive period-guided bidimensional empirical mode decomposition[J]. Optics Express,2020,28(5):6277-6293.
[88] [88] Goc?owski P, Cywińska M, Ahmad A, et al. Single-shot fringe pattern phase retrieval using improved period-guided bidimensional empirical mode decomposition and Hilbert transform[J]. Optics Express,2021,29(20):31632-31649.
[89] [89] Li S K, Su X Y, Chen W J. Hilbert assisted wavelet transform method of optical fringe pattern phase reconstruction for optical profilometry and interferometry[J]. Optik,2012,123(1):6-10.
[90] [90] Wu Z, Huang N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41.
[91] [91] Zhou Y, Li H. Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition[J]. Optics Express,2011,19(19):18207-18215.
[92] [92] Rehman N, Park C, Huang N.E, et al. EMD via MEMD: Multivariate noise-aided computation of standard EMD[J]. Advances in Adaptive Data Analysis,2013,5(2):1-25.
[93] [93] Colominas M A, Schlotthauer G, Torres M E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomed Signal Process Control,2014,14:19-29.
[94] [94] Zhou X, Podoleanu A G, Yang Z Q, et al. Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns[J]. Optics Express,2012,20(22):24247-24262.
[95] [95] Wang C X, Qian K M, Da F P. Automatic fringe enhancement with novel bidimensional sinusoids-assisted empirical mode decomposition[J]. Optics Express,2017,25(20):24299-24311.
[96] [96] Feng S J, Chen Q, Tao T Y, et al. Fringe pattern analysis using deep learning[J]. Advanced Photonics,2019,1(2):025001.
[97] [97] Shi J S, Zhu X J, Wang H Y. Label enhanced and patch based deep learning for phase retrieval from single frame fringe pattern in fringe projection 3D measurement[J]. Optics Express,2019,27(20):28929.
Get Citation
Copy Citation Text
GAO Nan, ZHANG Can, MENG Zhaozong, ZHANG Zonghua. Review on phase demodulation methods of fringe projection based on frequency domain analysis[J]. Optical Technique, 2023, 49(4): 436
Category:
Received: Nov. 2, 2023
Accepted: --
Published Online: Jan. 4, 2024
The Author Email:
CSTR:32186.14.