Journal of Inorganic Materials, Volume. 39, Issue 5, 561(2024)
[2] ZHAO S L, LU X Y, WANG L Z et al. Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions[J]. Advanced Materials, 1805369(2019).
[3] ZHANG L, DING L, CHEN G et al. Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets[J]. Angewandte Chemie International Edition, 2612(2019).
[5] HUANG L S, GU X L, ZHENG G F. Tuning active sites of MXene for efficient electrocatalytic N2 fixation[J]. Chem, 15(2019).
[6] LING C Y, ZHANG Y H, QIANG L et al. New mechanism for N2 reduction: the essential role of surface hydrogenation[J]. Journal of the American Chemical Society, 18264(2019).
[7] JIAO F, XU B. Electrochemical ammonia synthesis and ammonia fuel cells[J]. Advanced Materials, 1805173(2019).
[9] LI J, CHEN S, QUAN F. Accelerated dinitrogen electroreduction to ammonia
[10] XI J, JUNG H S, XU Y et al. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts[J]. Advanced Functional Materials, 2008318(2021).
[11] SHREYA M, YANG X X, SHAN W T et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O[J]. Small Methods, 1900821(2020).
[12] ZHAO W H, CHEN L L, ZHANG W H et al. Single Mo1(W1, Re1) atoms anchored in pyrrolic-N3 doped graphene as efficient electrocatalysts for the nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 6547(2021).
[13] YANG Y, LIU J, WEI Z et al. Transition metal-dinitrogen complex embedded graphene for nitrogen reduction reaction[J]. ChemCatChem, 2821(2019).
[14] CHOI C, BACK S, KIM., N Y et al. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline[J]. ACS Catalysis, 7517(2018).
[15] WU J, YANG L, LIU X et al. ZrN6-doped graphene for ammonia synthesis: a density functional theory study[J]. ChemPhysChem(2022).
[16] ZHOU H Y, LI J C, WEN Z et al. Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction
[18] ZHAO Z M, LONG Y, CHEN Y et al. Phosphorus doped carbon nitride with rich nitrogen vacancy to enhance the electrocatalytic activity for nitrogen reduction reaction[J]. Chemical Engineering Journal, 132682(2021).
[19] LI Q Y, QIU S Y, LIU C G et al. Computational design of single-molybdenum catalysts for the nitrogen reduction reaction[J]. Journal of Physical Chemistry C, 2347(2019).
[20] ZHANG S, WANG M, JIANG S et al. The activation and reduction of N2 by single/double-atom electrocatalysts: a first-principle study[J]. ChemistrySelect, 1787(2021).
[21] WU J, YANG L, LIU X et al. Transition metal decorated bismuthene for ammonia synthesis: a density functional theory study[J]. Chinese Chemical Letters, 107659(2022).
[22] CHEN Z, ZHAO J X, CABRERA C R et al. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction[J]. Small Methods, 1800368(2018).
[26] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. Journal of Chemical Physics, 508(1990).
[27] DELLEY B. From molecules to solids with the DMol3 approach[J]. Journal of Chemical Physics, 7756(2000).
[29] DELLEY B. Hardness conserving semilocal pseudopotentials[J]. Physical Review B, 155125(2002).
[30] TODOROVA T, DELLEY B. Wetting of paracetamol surfaces studied by DMol3-COSMO calculations[J]. Molecular Simulation, 1013(2008).
[31] CUI C N, ZHANG H C, LUO Z X. Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: a theoretical study of the atomically precise active-site mechanism[J]. Nano Research, 2280(2020).
[32] NØRSKOV J K, ROSSMEISL J. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 17886(2004).
[34] LIM D H, WILCOX J. Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles[J]. Journal of Physical Chemistry C, 3653(2012).
[36] JIAO Y, ZHENG Y, DAVEY K et al. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene[J]. Nature Energy, 16130(2016).
[37] HAMMER B, NØRSKOV J K. Theoretical surface science and catalysis—calculations and concepts[J]. Advances in Catalysis, 71(2000).
[38] LIU X, CHENG Y J, ZHENG Y et al. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single atom catalysts[J]. Journal of the American Chemical Society, 9664(2019).
[39] WEI Z X, ZHANG Y F, WANG S Y et al. Fe-doped phosphorene for the nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 13790(2018).
[40] SONG W, WANG J, FU L et al. First-principles study on Fe2B2 as efficient catalyst for nitrogen reduction reaction[J]. Chinese Chemical Letters, 3137(2021).
[41] AAYUSH R S, BRIAN A R, JAY A S et al. Electrochemical ammonia synthesis—the selectivity challenge[J]. ACS Catalysis, 706(2016).
[42] LIU C W, LI Q Y, ZHANG J et al. Theoretical evaluation of possible 2D boron monolayer in N2 electrochemical conversion into ammonia[J]. Journal of Physical Chemistry C, 25268(2018).
[43] XIAO B B, YANG L, YU L B et al. The VN3 embedded graphane with the improved selectivity for nitrogen fixation[J]. Applied Surface Science, 145855(2020).
[44] WANG Z G, WU H H, LI Q et al. Reversing interfacial catalysis of ambipolar WSe2 single crystal[J]. Advanced Science, 1901382(2019).
[45] LIU X, YANG L, WEI T et al. Active MoS2-based electrode for green ammonia synthesis[J]. Chinese Journal of Chemical Engineering, 268(2023).
Get Citation
Copy Citation Text
Honglan LI, Junmiao ZHANG, Erhong SONG, Xinglin YANG.
Category:
Received: Sep. 21, 2023
Accepted: --
Published Online: Jul. 8, 2024
The Author Email: Erhong SONG (ehsong@mail.sic.ac.cn), Xinglin YANG (hcyangxl2010@163.com)