Photonics Research, Volume. 10, Issue 6, 1361(2022)

Wideband diffusion metabsorber for perfect scattering field reduction

Zicheng Song1,2, Pingping Min1, Jiaqi Zhu1,4、*, Lei Yang3, and Feng Han Lin2,5、*
Author Affiliations
  • 1Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
  • 2School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3Research Center of Analysis and Measurement, Harbin Institute of Technology, Harbin 150080, China
  • 4e-mail: zhujq@hit.edu.cn
  • 5e-mail: linfh@shanghaitech.edu.cn
  • show less
    References(42)

    [1] N. Seyhan. Electromagnetic pollution and our health. Noro Psikiyatr Ars., 47, 158-161(2010).

    [2] O. Genc, M. Bayrak, E. Yaldiz. Analysis of the effects of GSM frequency band to electromagnetic pollution in the RF spectrum. Prog. Electromagn. Res., 101, 17-32(2010).

    [3] M. A. A. Frah, V. V. Belyaev. Parameters of electromagnetic pollution from different sources and their hazard impact. J. Phys. Conf. Ser., 1309, 012013(2019).

    [4] A. Lerchl. Electromagnetic pollution: another risk factor for infertility, or a red herring?. Asian J. Androl., 15, 201-203(2013).

    [5] P. Su, Y. Zhao, S. Jia, W. Shi, H. Wang. An ultra-wideband and polarization-independent metasurfaces for RCS reduction. Sci. Rep., 6, 20387(2016).

    [6] W. Li, T. Wu, W. Wang, P. Zhai, J. Guan. Broadband patterned magnetic microwave absorber. J. Appl. Phys., 116, 044110(2014).

    [7] M. Moccia, S. Liu, R. Y. Wu, G. Castaldi, A. Andreone, T. J. Cui, V. Galdi. Coding metasurfaces for diffuse scattering: scaling laws, bounds, and suboptimal design. Adv. Opt. Mater., 5, 1700455(2017).

    [8] Y. Okano, S. Ogino, K. Ishikawa. Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system. IEEE Trans. Microw. Theory Tech., 60, 2456-2464(2012).

    [9] C. Zhang, Q. Cheng, J. Yang, J. Zhao, T. J. Cui. Broadband metamaterial for optical transparency and microwave absorption. Appl. Phys. Lett., 110, 143511(2017).

    [10] H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, S. A. Ramakrishna. Transparent broadband metamaterial absorber based on resistive films. J. Appl. Phys., 122, 105105(2017).

    [11] Y. Wu, H. Lin, J. Xiong, J. Hou, R. Zhou, F. Deng, R. Tang. A broadband metamaterial absorber design using characteristic modes analysis. J. Appl. Phys., 129, 134902(2021).

    [12] Y. Chen, K. Chen, D. Zhang, S. Li, Y. Xu, X. Wang, S. Zhuang. Ultrabroadband microwave absorber based on 3D water microchannels. Photon. Res., 9, 1391-1396(2021).

    [13] Z. Yao, S. Xiao, Y. Li, B. Wang. On the design of wideband absorber based on multilayer and multiresonant FSS array. IEEE Antennas Wireless Propag. Lett., 20, 284-288(2021).

    [14] Z. Song, J. Zhu, L. Yang, P. Min, F. H. Lin. Wideband metasurface absorber (metabsorber) using characteristic mode analysis. Opt. Express, 29, 35387-35399(2021).

    [15] Z. Song, P. Min, L. Yang, J. Zhu, F. H. Lin. A bilateral coding metabsorber using characteristic mode analysis. IEEE Antennas Wireless Propag. Lett..

    [16] S. Lai, Y. Wu, X. Zhu, W. Gu, W. Wu. An optically transparent ultrabroadband microwave absorber. IEEE Photon. J., 9, 5503310(2017).

    [17] Z. Song, P. Min, L. Yang, J. Zhu. High optical transparent wideband microwave absorber. IEEE International Conference on Electronic Information and Communication Technology (ICEICT), 391-393(2021).

    [18] K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, Y. Svirko. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep., 4, 7191(2014).

    [19] R. Deng, K. Zhang, M. Li, L. Song, T. Zhang. Targeted design, analysis and experimental characterization offlexible microwave absorber for window application. Mater. Des., 162, 119-129(2019).

    [20] T. Jang, H. Youn, Y. J. Shin, L. J. Guo. Transparent and flexible polarization-independent microwave broadband absorber. ACS Photon., 1, 279-284(2014).

    [21] P. Min, Z. Song, L. Yang, V. G. Ralchenko, J. Zhu. Optically transparent flexible broadband metamaterial absorber based on topology optimization design. Micromachines, 12, 1419(2021).

    [22] C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, Q. Cheng, T. J. Cui. Transparently curved metamaterial with broadband millimeter wave absorption. Photon. Res., 7, 478-485(2019).

    [23] D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, J. Guan. Optically transparent broadband microwave absorbing metamaterial for standing-up closed-loop resonators. Adv. Opt. Mater., 5, 1700109(2017).

    [24] Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, S. Qu. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation. Opt. Express, 26, 15665-15674(2018).

    [25] P. Min, Z. Song, L. Yang, B. Dai, J. Zhu. Transparent ultrawideband absorber based on simple patterned resistive metasurface with three resonant modes. Opt. Express, 28, 19518-19530(2020).

    [26] C. Zhang, X. Y. Cao, J. Gao, S. J. Li, H. H. Yang, T. Li. Realization of entire-space electromagnetic wave manipulation with multifunctional metasurface. AIP Adv., 9, 015322(2019).

    [27] W. Chen, C. A. Balanis, C. R. Birtcher. Checkerboard EBG surfaces for wideband radar cross section reduction. IEEE Trans. Antennas Propag., 63, 2636-2645(2015).

    [28] J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, T. J. Cui. Fast design of broadband terahertz diffusion metasurfaces. Opt. Express, 25, 1050-1061(2017).

    [29] K. Chen, W. Guo, G. Ding, J. Zhao, T. Jiang, Y. Feng. Binary geometric phase metasurface for ultra-wideband microwave diffuse scatterings with optical transparency. Opt. Express, 28, 12638-12649(2020).

    [30] F. Costa, A. Monorchio, G. Manara. Wideband scattering and diffusion by using diffraction of periodic surfaces and optimized cell geometries. Sci. Rep., 6, 25458(2016).

    [31] J. Zhao, C. Zhang, Q. Cheng, J. Yang, T. J. Cui. An optically transparent metasurface for broadband microwave antireflection. Appl. Phys. Lett., 112, 073504(2018).

    [32] L. Bao, Q. Ma, G. D. Bai, H. B. Jing, R. Y. Wu, X. Fu, C. Yang, J. Wu, T. J. Cui. Design of digital coding metasurfaces with independent controls of phase and amplitude responses. Appl. Phys. Lett., 113, 063502(2018).

    [33] T. Li, K. Chen, G. Ding, J. Zhao, T. Jiang, Y. Feng. Optically transparent metasurface Salisbury screen with wideband microwave absorption. Opt. Express, 26, 34384-34395(2018).

    [34] C. Ji, C. Huang, X. Zhang, J. Yang, J. Song, X. Luo. Broadband low-scattering metasurface using a combination of phase cancellation and absorption mechanisms. Opt. Express, 27, 23368-23377(2019).

    [35] J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, Y. Feng. Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements. Opt. Express, 24, 27849-27857(2016).

    [36] K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, B. Zhu. Coding metasurface for broadband microwave scattering reduction with optical transparency. Opt. Express, 25, 5571-5579(2017).

    [38] J. M. Johnson, Y. Rahmat-Samii. Genetic algorithms in engineering electromagnetics. IEEE Antennas Propag. Mag., 39, 7-25(1997).

    [39] D. S. Weile, E. Michielssen. Genetic algorithm optimization applied to electromagnetics: a review. IEEE Trans. Antennas Propag., 45, 343-353(1997).

    [40] T. J. Cui, S. Liu, L. L. Li. Information entropy of coding metasurface. Light Sci. Appl., 5, e16172(2016).

    [41] C. A. Balanis. Antenna Theory: Analysis and Design(2016).

    [42] A. D. Brown. Electronically Scanned Arrays MATLAB® Modeling and Simulation(2012).

    Tools

    Get Citation

    Copy Citation Text

    Zicheng Song, Pingping Min, Jiaqi Zhu, Lei Yang, Feng Han Lin, "Wideband diffusion metabsorber for perfect scattering field reduction," Photonics Res. 10, 1361 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical and Photonic Materials

    Received: Mar. 7, 2022

    Accepted: Apr. 6, 2022

    Published Online: May. 12, 2022

    The Author Email: Jiaqi Zhu (zhujq@hit.edu.cn), Feng Han Lin (linfh@shanghaitech.edu.cn)

    DOI:10.1364/PRJ.457810

    Topics