Acta Optica Sinica, Volume. 34, Issue 10, 1001003(2014)

High-Frequency Error Compensation Method for the Fast Fourier Transform-Based Turbulent Phase Screen

Xiang Jingsong*
Author Affiliations
  • [in Chinese]
  • show less
    References(17)

    [1] [1] B L McGlamery. Computer simulation studies of compensation of turbulence degraded images [C]. SPIE, 1976, 74: 225-233.

    [2] [2] B J Herman, L A Strugala. Method for inclusion of low-frequency contributions in numerical representation of atmospheric turbulence [C]. SPIE, 1990, 1221: 183-192.

    [3] [3] E M Johansson, D T Gavel. Simulation of stellar speckle imaging [C]. SPIE, 1994, 2200: 372-383.

    [4] [4] G Sedmak. Implementation of fast-Fourier-transform-based simulation of extra-large atmospheric phase and scintillation screens [J]. Appl Opt, 2004, 43(23): 4527-4538.

    [5] [5] Jingsong Xiang. Accurate compensation of the low-frequency components for the FFT-based turbulent phase screen [J]. Opt Express, 2012, 20(1): 681-687.

    [6] [6] Jingsong Xiang. Fast and accurate simulation of the turbulent phase screen using fast Fourier transform [J]. Opt Eng, 2014, 53(1): 016110.

    [7] [7] R G Lane, A Glindemann, J C Dainty. Simulation of a Kolmogorov phase screen [J]. Waves in Random Media, 1992, 2(3): 209-224.

    [8] [8] Baodong Zhang, Shiqiao Qin, Xingshu Wang. Accurate and fast simulation of Kolmogorov phase screen by combining spectral method with Zernike polynomials method [J]. Chin Opt Lett, 2010, 8(10): 969-971.

    [9] [9] N Roddier. Atmospheric wavefront simulation using Zernike polynomials [J]. Opt Eng, 1990, 29(10): 1174-1180.

    [10] [10] K A Winick. Atmospheric turbulence-induced signal fades on optical heterodyne communication links [J].Appl Opt, 1986, 25(11): 1817-1825.

    [11] [11] C M Harding, R A Johnston, R G Lane. Fast simulation of a Kolmogorov phase screen [J]. Appl Opt, 1999, 38(11): 2161-2170.

    [13] [13] Hua Zhili, Li Hongping. Atmospheric turbulence phase screen simulation based on random unit expansion [J]. Acta Optica Sinica, 2012, 32(5): 0501001.

    [14] [14] Ding Xiaona, Cai Dongmei, Zhao Yuan, et al.. Performance of atmospheric turbulence phase screen simulation using fractal method [J]. Chinese J Lasers, 2013, 40(12): s113002.

    [15] [15] G C Valley. Long- and short-term Strehl ratios for turbulence with finite inner and outer scales [J]. Appl Opt, 1979, 18(7): 984-987.

    [16] [16] I S Gradshteyn, I M Ryzhik. Table of Integrals, Series, and Products (7th Edition) [M].San Diego: Elsevier Academic Press, 2007.

    [17] [17] D L Fried. Optical heterodyne detection of an atmospherically distorted signal wave front [C]. Proc IEEE, 1967, 55(1): 57-67.

    CLP Journals

    [1] Zhang Zhilu, Cai Dongmei, Jia Peng, Wei Hongyan. Fast Simulation for High Precision Atmospheric Turbulence Phase Screen Based on Power Spectrum[J]. Laser & Optoelectronics Progress, 2017, 54(2): 20101

    [2] Tianxing Yang, Shengmei Zhao. Random Phase Screen Model of Ocean Turbulence[J]. Acta Optica Sinica, 2017, 37(12): 1201001

    [3] Feng Fan, Li Changwei. Simulation of Atmospheric Turbulence Phase Screen Based on Wavelet Analysis[J]. Acta Optica Sinica, 2017, 37(1): 101004

    Tools

    Get Citation

    Copy Citation Text

    Xiang Jingsong. High-Frequency Error Compensation Method for the Fast Fourier Transform-Based Turbulent Phase Screen[J]. Acta Optica Sinica, 2014, 34(10): 1001003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: May. 29, 2014

    Accepted: --

    Published Online: Sep. 9, 2014

    The Author Email: Xiang Jingsong (xiangjs@cqupt.edu.cn)

    DOI:10.3788/aos201434.1001003

    Topics