Chinese Optics Letters, Volume. 19, Issue 8, 081405(2021)

Recent development of saturable absorbers for ultrafast lasers [Invited] Editors' Pick

Mengyu Zhang, Hao Chen, Jinde Yin, Jintao Wang, Jinzhang Wang, and Peiguang Yan*
Author Affiliations
  • Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    References(240)

    [1] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493(1960).

    [2] A. Javan, W. R. Bennett, D. R. Herriott. Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture. Phys. Rev. Lett., 6, 106(1961).

    [3] E. Snitzer. Optical maser action of Nd+3 in a barium crown glass. Phys. Rev. Lett., 7, 444(1961).

    [4] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, R. O. Carlson. Coherent light emission from GaAs junctions. Phys. Rev. Lett., 9, 366(1962).

    [5] W. Dietel, E. Döpel, D. Kühlke, B. Wilhelmi. Pulses in the femtosecond range from a cw dye ring laser in the colliding pulse mode-locking (CPM) regime with down-chirp. Opt. Commun., 43, 433(1982).

    [6] U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett., 24, 411(1999).

    [7] M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane. Generation of 11-fs pulses from a self-mode-locked Ti: sapphire laser. Opt. Lett., 18, 977(1993).

    [8] A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipöcs. Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett., 20, 602(1995).

    [9] P. Antoine, A. L’huillier, M. Lewenstein. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett., 77, 1234(1996).

    [10] K. T. Kim, C. M. Kim, M. G. Baik, G. Umesh, C. H. Nam. Single sub 50 attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion.. Phys. Rev. A, 69, 051805(2004).

    [11] A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, A. M. Sergeev. Horizons of petawatt laser technology. Phys.-Uspekhi, 54, 9(2011).

    [12] F. Lureau, G. Matras, S. Laux, C. Radier, O. Chalus, O. Casagrande, C. Derycke, S. Ricaud, P. Calvet, L. Boudjemaa, C. S. Boisson, D. Ursescu, I. Dancus. 10 petawatt laser system for extreme light physics, ATh1A.5(2019).

    [13] A. H. Zewail. Laser femtochemistry. Science, 242, 1645(1988).

    [14] H. Jung, R. Stoll, X. Guo, D. Fischer, H. X. Tang. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica, 1, 396(2014).

    [15] M. Suh, Q. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 354, 600(2016).

    [16] J. Wu, Y. Xu, J. Xu, X. Wei, A. Chan, A. Tang, A. Lau, B. Chung, H. Shum, E. Lam, K. Wong, K. Tsia. Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light Sci. Appl., 6, e16196(2017).

    [17] M. Hassan, J. Baskin, B. Liao, A. H. Zewail. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nat. Photon., 11, 425(2017).

    [18] K. Sugioka, Y. Cheng. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).

    [19] G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, N. R. Newbury. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 1, 290(2014).

    [20] A. Rohrbacher, O. E. Olarte, V. Villamaina, P. L. Alvarez, B. Resan. Multiphoton imaging with blue-diode-pumped SESAM-modelocked Ti:sapphire oscillator generating 5 nJ 82 fs pulses. Opt. Express, 25, 10677(2017).

    [21] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831(2003).

    [22] O. Okhotnikov, A. Grudinin, M. Pessa. Ultra-fast fiber laser systems based on SESAM technology: new horizons and applications. New J. Phys., 6, 177(2004).

    [23] Y. Mao, X. Tong, Z. Wang, L. Zhan, P. Hu, L. Chen. Wavelength-tunable 10 GHz actively harmonic mode-locked fiber laser based on semiconductor optical amplifier. Appl. Phys. B, 121, 517(2015).

    [24] A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, D. W. Prather. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810(2018).

    [25] J. Qin, R. Dai, Y. Li, Y. Meng, Y. Xu, S. Zhu, F. Wang. 20 GHz actively mode-locked thulium fiber laser. Opt. Express, 26, 25769(2018).

    [26] W. H. Glenn, M. J. Brienza, A. J. DeMaria. Mode locking of an organic dye laser. Appl. Phys. Lett., 12, 54(1968).

    [27] C. V. Shank, E. P. Ippen. Subpicosecond kilowatt pulses from a mode-locked cw dye laser. Appl. Phys. Lett., 24, 373(1974).

    [28] C. Ausschnitt, R. Jain, J. Heritage. Cavity length detuning characteristics of the synchronously mode-locked CW dye laser. IEEE J. Quantum Elect., 15, 912(1979).

    [29] S. Vasilyev, M. Mirov, V. Gapontsev. Kerr-lens mode-locked femtosecond polycrystalline Cr2+: ZnS and Cr2+: ZnSe lasers. Opt. Express, 22, 5118(2014).

    [30] Z.-Y. Gao, J.-F. Zhu, K. Wang, J.-L. Wang, Z.-H. Wang, Z.-Y. Wei. Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser. Chin. Phys. B, 25, 024205(2016).

    [31] S. Ghanbari, R. Akbari, A. Major. Femtosecond Kerr-lens mode-locked alexandrite laser. Opt. Express, 24, 14836(2016).

    [32] U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus der Au. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Quantum Electron., 2, 435(1996).

    [33] F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, A. C. Ferrari. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 3, 738(2008).

    [34] G. Sobon. “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [Invited]. Photon. Res., 3, A56(2015).

    [35] T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari. Nanotube–polymer composites for ultrafast photonics. Adv. Mater., 21, 3874(2009).

    [36] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nature Photon., 7, 842(2013).

    [37] G. Wang, A. A. Baker-Murray, W. J. Blau. Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photon. Rev., 13, 1800282(2019).

    [38] B. Guo, Q. Xiao, S. Wang, H. Zhang. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photon. Rev., 13, 1800327(2019).

    [39] U. Keller, W. H. Knox, H. Roskos. Coupled-cavity resonant passive mode-locked (RPM) Ti:sapphire laser. Opt. Lett., 15, 1377(1990).

    [40] I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi. Self-starting 6.5-fs pulses from a Ti:sapphire laser. Opt. Lett., 22, 1009(1997).

    [41] F. X. Kurtner, J. A. der Au, U. Keller. Mode-locking with slow and fast saturable absorbers – what’s the difference?. IEEE J. Sel. Top. Quantum Electron, 4, 159(1998).

    [42] R. Paschotta, U. Keller. Passive mode-locking with slow saturable absorbers. Appl. Phys. B, 73, 653(2001).

    [43] G. J. Spühler, K.J. Weingarten, R. Grange, L. Krainer, M. Halml, V. Liverini, M. Golling, S. Schon, U. Keller. Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B, 81, 27(2005).

    [44] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller. Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc. Am. B, 16, 46(1999).

    [45] S. A. Campbell. The Science and Engineering of Microelectronic Fabrication(2001).

    [46] E. U. Rafailov, A. A. Lagatsky, S. A. Zolotovskaya, W. Sibbett. Compact and efficient mode-locked lasers based on QD-SESAMs. Proc. SPIE, 6998, 69980B(2008).

    [47] S. Iijima. Synthesis of carbon nanotubes. Nature, 354, 56(1991).

    [48] H.-S. P. Wong, D. Akinwande. Carbon Nanotube and Graphene Device Physics(2011).

    [49] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker. Electronic structure of atomically resolved carbon nanotubes. Nature, 391, 59(1998).

    [50] S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, M. S. Strano. Excited-state carrier lifetime in single-walled carbon nanotubes. Phys. Rev. B, 71, 033402(2005).

    [51] Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, G. R. Fleming. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. J. Chem. Phys., 120, 3368(2004).

    [52] S. Set, H. Yaguchi, M. Jablonski, Y. Tanaka, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba. A noise suppressing saturable absorber at 1550 nm based on carbon nanotube technology, 723.

    [53] S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, O. Okhotnikov. Carbon nanotube films for ultrafast broadband technology. Opt. Express, 17, 2358(2009).

    [54] M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. Konov, E. M. Dianov. Mode-locked 1.93 µm thulium fiber laser with a carbon nanotube absorber. Opt. Lett., 33, 1336(2008).

    [55] L. Huang, Y. Zhang, X. Liu. Dynamics of carbon nanotube-based mode-locking fiber lasers. Nanophotonics, 9, 2731(2020).

    [56] C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, Y. Liu. Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube. IEEE J Quantum Electron., 25, 1100206(2019).

    [57] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim. Fine structure constant defines visual transparency of graphene. Science, 320, 1308(2008).

    [58] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803(2010).

    [59] G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski. Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers. Opt. Mater. Express, 5, 2884(2015).

    [60] K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, A. M. Malvezzi. Femtosecond carrier dynamics in graphite. Phys. Rev. B, 42, 2842(1990).

    [61] M. Breusing, C. Ropers, T. Elsaesser. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett., 102, 086809(2009).

    [62] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater, 19, 3077(2009).

    [63] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [64] I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, F. Rotermund. Mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber. Appl. Phys. Express, 5, 032701(2013).

    [65] H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express, 17, 17630(2009).

    [66] D. I. M. Zen, N. Saidin, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. A. Ismail, K. Dimyati, A. Halder, M. C. Paul, S. Das, M. Pal, S. K. Bhadra. Mode-locked thulium bismuth codoped fiber laser using graphene saturable absorber in ring cavity: reply. Appl. Opt., 52, 1226(2013).

    [67] G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Fe2+: ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 µm. Opt. Mater. Express, 3, 1365(2013).

    [68] A. Malouf, O. Henderson-Sapir, S. Set, S. Yamashita, D. J. Ottaway. Two-photon absorption and saturable absorption of mid-IR in graphene. Appl. Phys. Lett., 114, 091111(2019).

    [69] M. Xu, T. Liang, M. Shi, H. Chen. Graphene-like two-dimensional materials. Chem. Rev., 113, 3766(2013).

    [70] R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, J. R. Taylor. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt. Express, 22, 31113(2014).

    [71] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [72] A. Kuc, N. Zibouche, T. Heine. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B, 83, 245213(2011).

    [73] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, J. D. Lee. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B, 85, 033305(2012).

    [74] G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, U. Keller. Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B, 81, 27(2005).

    [75] D. J. H. C. Maas, A.-R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller. Growth parameter optimization for fast quantum dot SESAMs. Opt. Express, 16, 18646(2008).

    [76] B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, U. Keller. Recent advances in ultrafast semiconductor disk lasers. Light: Sci. Appl., 4, e310(2015).

    [77] F. Saltarelli, A. Diebold, I. J. Graumann, C. R. Phillips, U. Keller. Self-phase modulation cancellation in a high-power ultrafast thin-disk laser oscillator. Optica, 5, 1603(2018).

    [78] M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller. Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL). Opt. Express, 21, 24904(2013).

    [79] X. Wang, Y. J. Zhu, C. Jiang, Y. X. Guo, X. T. Ge, H. M. Chen, J. Q. Ning, C. C. Zheng, Y. Peng, X. H. Li, Z. Y. Zhang. InAs/GaAs quantum dot semiconductor saturable absorber for controllable dual-wavelength passively Q-switched fiber laser. Opt. Express, 27, 20649(2019).

    [80] T. Finke, J. Nürnberg, V. Sichkovskyi, M. Golling, U. Keller, J. P. Reithmaier. Temperature resistant fast InxGa1−xAs/GaAs quantum dot saturable absorber for the epitaxial integration into semiconductor surface emitting lasers. Opt. Express, 28, 20954(2020).

    [81] S.-H. Kwona, D. H. Song, I.-S. Kim, D.-K. Ko. Operating characteristics of a SESAM-assisted mode-locked laser oscillator with the location of the SESAM position. Opt. Laser. Technol., 133, 106560(2021).

    [82] A. E. H. Oehler, T. Südmeyer, K. J. Weingarten, U. Keller. 100 GHz passively mode-locked Er:Yb:glass laser at 1.5 µm with 1.6-ps pulses. Opt. Express, 16, 21930(2008).

    [83] U. Keller. Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl. Phys. B, 100, 15(2010).

    [84] C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, U. Keller. Ultrafast thin-disk laser with 80 µJ pulse energy and 242 W of average power. Opt. Lett., 39, 9(2014).

    [85] F. Saltarelli, I. J. Graumann, L. Lang, D. Bauer, C. R. Phillips, U. Keller. Power scaling of ultrafast oscillators: 350-W average-power sub-picosecond thin-disk laser. Opt. Express, 27, 31465(2019).

    [86] K. A. Williams, M. G. Thompson, I. H. White. Long-wavelength monolithic mode-locked diode lasers. New J. Phys., 6, 179(2004).

    [87] E. A. Avrutin, J. H. Marsh, E. L. Portnoi. Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications. IEEE Proc. Optoelectron., 147, 251(2000).

    [88] U. Keller, A. C. Tropper. Passively modelocked surface-emitting semiconductor lasers. Phys. Rep., 429, 67(2006).

    [89] C. G. E. Alfieri, D. Waldburger, M. Golling, U. Keller. High-power sub-300-femtosecond quantum dot semiconductor disk lasers. IEEE Photon. Technol. Lett, 30, 525(2018).

    [90] A. Laurain, I. Kilen, J. Hader, A. R. Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, J. V. Moloney. Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses. Appl. Phys. Lett., 113, 121113(2018).

    [91] M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney. Passively mode locked VECSEL emitting 682 fs pulses with 5.1 W of average output power. Electron Lett., 48, 588(2012).

    [92] D. Lorenser, D. J. H. C. Maas, H. J. Unold, A-R. Bellancourt, B. Rudi, E. Gini, D. Ebling, U. Keller. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power. IEEE J. Quantum Electron., 42, 838(2006).

    [93] K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz. 4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation. Opt. Express, 21, 1599(2013).

    [94] D. J. H. C. Maas, A-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, U. Keller. Vertical integration of ultrafast semiconductor lasers. Appl. Phys. B, 88, 493(2007).

    [95] M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller. Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser. Opt. Express, 22, 6099(2014).

    [96] B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power. Opt. Express, 18, 27582(2010).

    [97] C. G. E. Alfieri, D. Waldburger, J. Nürnberg, M. Golling, U. Keller. Sub-150-fs pulses from an optically pumped broadband mode locked integrated external-cavity surface emitting laser. Opt. Lett., 44, 25(2019).

    [98] F. Labaye, M. Gaponenko, V. J. Wittwer, A. Diebold, C. Paradis, N. Modsching, L. Merceron, F. Emaury, I. J. Graumann, C. R. Phillips, C. J. Saraceno, C. Kränkel, U. Keller, T. Südmeyer. Extreme ultraviolet light source at a megahertz repetition rate based on high-harmonic generation inside a mode-locked thin-disk laser oscillator. Opt. Lett., 42, 5170(2017).

    [99] A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, W. Sibbett. Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 µm. Opt. Lett., 35, 172(2010).

    [100] V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, U. Griebner. Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs. Opt. Express, 23, 4614(2015).

    [101] K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, A. N. Baranov. Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 µm. Appl. Phys. Lett., 107, 111109(2015).

    [102] P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, J. Wagner. Recent advances in power scaling of GaSb-based semiconductor disk lasers. IEEE J. Sel. Top. Quantum Electron, 21, 324(2015).

    [103] Y. Zhao, Y. Wang, X. Zhang, X. Mateos, Z. Pan, P. Loiko, W. Zhou, X. Xu, J. Xu, D. Shen, S. Suomalainen, A. Härkönen, M. Guina, U. Griebner, V. Petrov. 87  fs mode-locked Tm,Ho:CaYAlO4 laser at ∼2043  nm. Opt. Lett., 43, 915(2018).

    [104] P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, G. Huber. High-power red, orange, and green Pr3+:LiYF4 lasers. Opt. Lett., 39, 3193(2014).

    [105] K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, T. Südmeyer. Green-diode-pumped femtosecond Ti:sapphire laser with up to 450 mW average power. Opt. Express, 23, 30043(2015).

    [106] Y. Zhang, V. Petrov, U. Griebner, X. Zhang, H. Yu, H. Zhang, J. Liu. Diode-pumped SESAM mode-locked Yb:CLNGG laser,”. Opt. Laser Technol., 69, 144(2015).

    [107] J. Ma, Z. Pan, J. Wang, H. Yuan, H. Cai, G. Xie, L. Qian, D. Shen, D. Tang. Generation of sub-50fs soliton pulses from a mode-locked Yb, Na:CNGG disordered crystal laser. Opt. Express, 25, 14968(2017).

    [108] A. S. Mayer, C. R. Phillips, U. Keller. Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal. Nat. Commun., 8, 1673(2017).

    [109] R. Akbari, K. A. Fedorova, E. U. Rafailov, A. Major. Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking. Appl. Phys. B, 123, 123(2017).

    [110] R. Grange, S. Zeller, M. Haiml, O. Ostinelli, E. Gini, S. Schon, U. Keller. Antimonide semiconductor saturable absorber for passive mode locking of a 1.5-µm Er:Yb:glass laser at 10 GHz. IEEE Photon. Technol. Lett, 18, 805(2006).

    [111] A. Choudhary, A. A. Lagatsky, Z. Y. Zhang, K. J. Zhou, Q. Wang, R. A. Hogg, K. Pradeesh, E. U. Rafailov, W. Sibbett, C. T. A. Brown, D. P. Shepherd. A diode-pumped 1.5 µm waveguide laser mode-locked at 6.8 GHz by a quantum dot SESAM. Laser Phys. Lett., 10, 105803(2013).

    [112] N. K. Stevenson, C. T. A. Brown, J.-M. Hopkins, M. D. Dawson, C. Kränkel, A. A. Lagatsky. Diode-pumped femtosecond Tm3+-doped LuScO3 laser near 2.1  µm. Opt. Lett., 43, 1287(2018).

    [113] X. Bu, Y. Shi, J. Xu, H. Li, P. Wang. 408-fs SESAM mode locked Cr:ZnSe laser. Proc. SPIE, 10619, 1061903(2018).

    [114] Y. Wang, W. Jing, P. Loiko, Y. Zhao, H. Huang, X. Mateos, S. Suomalainen, A. Härkönen, M. Guina, U. Griebner, V. Petrov. Sub-10 optical-cycle passively mode-locked Tm:(Lu2/3Sc1/3)2O3 ceramic laser at 2 µm. Opt. Express, 26, 10299(2018).

    [115] Y. Wang, Y. Zhao, Z. Pan, S. Suomalainen, A. Härkönen, M. Guina, U. Griebner, L. Wang, P. Loiko, X. Mateos, W. Chen, V. Petrov. 73-fs SESAM mode-locked Tm,Ho:CNGG laser at 2061 nm. Proc. SPIE, 11259, 1125929(2020).

    [116] E. Sorokin, I. T. Sorokina. Femtosecond operation and random quasi-phase-matched self-doubling of ceramic Cr:ZnSe laser, CTuGG2(2010).

    [117] E. Sorokin, N. Tolstik, K. I. Schaffers, I. T. Sorokina. Femtosecond SESAM-mode locked Cr:ZnS laser. Opt. Express, 20, 28947(2012).

    [118] I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, U. Keller. Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers. Opt. Express, 25, 22519(2017).

    [119] F. Saltarelli, A. Diebold, I. J. Graumann, C. R. Phillips, U. Keller. Self-phase modulation cancellation in a high-power ultrafast thin-disk laser oscillator. Opt. Lett., 5, 25(2018).

    [120] A. Härkönen, S. Suomalainen, A. Rantamäki, J. Nikkinen, Y. Wang, U. Griebner, G. Steinmeyer, M. Guina. 1.34  µm VECSEL mode-locked with a GaSb-based SESAM. Opt. Lett., 43, 3353(2018).

    [121] T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, Y. Sakakibara. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Opt. Express, 13, 8025(2005).

    [122] D. V. Khudyakov, A. S. Lobach, V. A. Nadtochenko. Passive mode locking in a Ti:sapphire laser using a single-walled carbon nanotube saturable absorber at a wavelength of 810 nm. Opt. Lett., 35, 2675(2010).

    [123] I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D. Yeom, K. Kim, F. Rotermund. Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser. Opt. Express, 19, 7833(2011).

    [124] A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, U. Griebner. Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber. Opt. Lett., 33, 729(2008).

    [125] S. Y. Choi, T. Calmano, F. Rotermund, C. Kränkel. 2-GHz carbon nanotube mode-locked Yb:YAG channel waveguide laser. Opt. Express, 26, 5140(2018).

    [126] W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, F. Rotermund. Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber. Opt. Lett., 33, 2449(2008).

    [127] Z. Pan, Y. Wang, Y. Zhao, H. Yuan, X. Dai, H. Cai, J. E. Bae, S. Y. Choi, F. Rotermund, X. Mateos, J. M. Serres, P. Loiko, U. Griebner, V. Petrov. Generation of 84-fs pulses from a mode-locked Tm:CNNGG disordered garnet crystal laser. Photon. Res., 6, 800(2018).

    [128] N. Tolstik, O. Okhotnikov, E. Sorokin, I. T. Sorokina. Femtosecond Cr:ZnS laser at 2.35 µm mode-locked by carbon nanotubes. Proc. SPIE, 8959, 89591A(2014).

    [129] W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz. Passive mode-locking of a Tm-doped bulk laser near 2 µm using a carbon nanotube saturable absorber. Opt. Express, 17, 11007(2009).

    [130] J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, J. Wang. Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers. Sci. Rep., 4, 5016(2014).

    [131] A. G. Khrimchuk, P. A. Obraztsov. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene. Sci. Rep., 5, 11172(2015).

    [132] N. Tolstik, E. Sorokin, I. T. Sorokina. Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration. Opt. Express, 22, 5564(2014).

    [133] C. Feng, X. Zhang, J. Wang, Z. Liu, Z. Cong, H. Rao, Q. Wang, J. Fang. Passively mode-locked Nd3+:YVO4 laser using a molybdenum disulfide as saturable absorber. Opt. Mater. Express, 6, 1358(2016).

    [134] L. Tao, X. Huang, J. He, Y. Lou, L. Zeng, Y. Li, H. Long, J. Li, L. Zhang, Y. H. Tsang. Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd:LuVO4 laser. Photon. Res., 6, 750(2018).

    [135] K. Seger, N. Meiser, S. Y. Choi, B. H. Jung, D.-I. Yeom, F. Rotermund, O. Okhotnikov, F. Laurell, V. Pasiskevicius. Carbon nanotube mode-locked optically-pumped semiconductor disk laser. Opt. Express, 21, 17806(2013).

    [136] C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, U. Keller. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. Opt. Express, 21, 31548(2013).

    [137] S. Husaini, R. G. Bedford. Graphene saturable absorber for high power semiconductor disk laser mode-locking. Appl. Phys. Lett., 104, 161107(2014).

    [138] M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, A. A. Onushchenko. Compact passively Q-switched diode-pumped Tm:KY(WO4)2 laser with 8 ns/30 µJ pulses. Laser Phys. Lett., 7, 286(2010).

    [139] M. Zhang, R. C. T. Howe, R. I. Edmund, J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, T. Hasan. Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res., 8, 1522(2015).

    [140] M. Yi, Z. Shen. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A, 3, 11700(2015).

    [141] H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, K. P. Loh. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express, 22, 7249(2014).

    [142] D. Steinberg, R. M. Gerosa, F. N. Pellicer, J. D. Zapata, S. H. Domingues, E. A. Thoroh de Souza, L. A. M. Saito. Graphene oxide and reduced graphene oxide as saturable absorbers onto D-shaped fibers for sub 200-fs EDFL mode-locking. Opt. Mater. Express, 8, 144(2018).

    [143] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, V. Nicolosi. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331, 568(2011).

    [144] T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, H. Zhang. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photon. Res., 8, 78(2020).

    [145] D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, A. C. Ferrari. 74-fs nanotube-mode-locked fiber laser. Appl. Phys. Lett., 101, 153107(2012).

    [146] D. Mao, B. Jiang, W. Zhang, J. Zhao. Pulse-state switchable fiber laser mode-locked by carbon nanotubes. IEEE Photon. Technol. Lett., 27, 253(2015).

    [147] Y. Meng, Y. Li, Y. Xu, F. Wang. Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range. Sci. Rep., 7, 45109(2017).

    [148] J. W. Nicholson, R. S. Windeler, D. J. DiGiovanni. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt. Express, 15, 9176(2007).

    [149] G. Sobon, A. Duzynska, M. Świniarski, J. Judek, J. Sotor, M. Zdrojek. CNT-based saturable absorbers with scalable modulation depth for thulium-doped fiber lasers operating at 1.9 µm. Sci. Rep., 7, 45491(2017).

    [150] W. Liu, M. Liu, X. Chen, T. Shen, M. Lei, J. Guo, H. Deng, W. Zhang, C. Dai, X. Zhang, Z. Wei. Ultrafast photonics of two dimensional AuTe2Se4/3 in fiber lasers. Commun. Phys., 3, 15(2020).

    [151] K. Kieu, M. Mansuripur. Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. Opt. Lett., 32, 2242(2007).

    [152] Y.-W. Song, S. Yamashita, S. Maruyama. Single-walled carbon nanotubes for high-energy optical pulse formation. Appl. Phys. Lett., 92, 021115(2008).

    [153] M. Liu, X.-W. Zheng, Y.-L. Qi, H. Liu, A.-P. Luo, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, H. Zhang. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser. Opt. Express, 22, 22841(2014).

    [154] M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, S. Ruan. Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics. APL Photon., 4, 090801(2019).

    [155] J. D. Yin, F. X. Zhu, J. T. Lai, H. Chen, M. Y. Zhang, J. Q. Zhang, J. T. Wang, T. C. He, B. Zhang, J. P. Yuan, P. G. Yan, S. C. Ruan. Hafnium sulfide nanosheets for ultrafast photonic device. Adv. Opt. Mater., 7, 1801303(2018).

    [156] X. Wu, Z. W. Zhou, J. D. Yin, M. Zhang, L. L. Zhou, Q. X. Na, J. T. Wang, Y. Yu, J. B. Yang, R. H. Chi. Ultrafast fiber laser based on HfSe2 saturable absorber. Nanotechonlogy, 31, 24(2020).

    [157] X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, X. Xu. Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber. J. Lightwave Technol., 36, 5130(2018).

    [158] G. Hu, L. Yang, Z. Yang, Y. Wang, X. Jin, J. Dai, Q. Wu, S. Liu, X. Zhu, X. Wang, T. Wu, R. C. T. Howe, T. Albrow-Owen, L. W. T. Ng, Q. Yang, L. G. Occhipinti, R. I. Woodward, E. J. R. Kelleher, Z. Sun, X. Huang, M. Zhang, C. D. Bain, T. Hasan. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Sci. Adv., 6, eaba5029(2020).

    [159] Y. Gao, W. Shi, W. Wang, Y. Leng, Y. Zhao. Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind. Eng. Chem. Res., 53, 16777(2014).

    [160] Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. Lee, Y. Gogotsi, Y. M. Jhon. 2D materials: metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv Mater., 29, 1702496(2017).

    [161] G. Hu, T. A. Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T.-C. Wu, H. Jussila, J.-B. Wu, P. Peng, P.-H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, T. Hasan. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun., 8, 1(2017).

    [162] X. Jin, G. Hu, M. Zhang, Y. Hu, T. A. Owen, R. C. T. Howe, T.-C. Wu, Q. Wu, Z. Zheng, T. Hasan. 102 fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser. Opt. Express, 26, 12506(2018).

    [163] X. Jiang, W. Li, T. Hai, R. Yue, Z. Chen, C. Lao, Y. Ge, G. Xie, Q. Wen, H. Zhang. Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics. NPJ 2D Mater. Appl., 3, 34(2019).

    [164] J. Lee, H. Chung, J. Koo, G. Woo, J. H. Lee. A 3-D printed saturable absorber for femtosecond mode-locking of a fiber laser. Opt. Mater., 89, 382(2019).

    [165] G. Woo, J. Lee, J. H. Lee. A 1.9 µm femtosecond fiber laser using a 3D printed, all-fiberized graphene/polylactic-acid saturable absorber. Laser Phys. Lett, 16, 085101(2019).

    [166] K. Kieu, F. W. Wise. All-fiber normal-dispersion femtosecond laser. Opt. Express, 16, 11453(2008).

    [167] L. Hou, H. Guo, Y. Wang, J. Sun, Q. Lin, Y. Bai, J. Bai. Sub-200 femtosecond dispersion-managed soliton ytterbium-doped fiber laser based on carbon nanotubes saturable absorber. Opt. Express, 26, 9063(2018).

    [168] G. Sobon, A. Duzynska, M. Świniarski, J. Judek, J. Sotor, M. Zdrojek. CNT-based saturable absorbers with scalable modulation depth for thulium-doped fiber lasers operating at 1.9 µm. Sci. Rep., 7, 45491(2017).

    [169] Z. Sun, T. Hasan, F. Wang, A. G. Rozhin, I. H. White, A. C. Ferrari. Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes. Nano Res., 3, 404(2010).

    [170] A. Martinez, S. Yamashita. Multi-gigahertz repetition rate passively mode locked fiber lasers using carbon nanotubes. Opt. Express, 19, 6155(2011).

    [171] J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, T. Hasan. 152 fs nanotube-mode-locked thulium-doped all-fiber laser. Sci. Rep., 6, 28885(2016).

    [172] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803(2010).

    [173] D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, A. C. Ferrari. Few-cycle pulses from a graphene mode-locked all-fiber laser. Appl. Phys. Lett., 106, 253101(2015).

    [174] D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett., 97, 203106(2010).

    [175] A. Martinez, S. Yamashita. 10 GHz fundamental mode fiber laser using a graphene saturable absorber. Appl. Phys. Lett., 101, 041118(2012).

    [176] Y. Zhang, J. Zhu, P. Li, X. Wang, H. Yu, K. Xiao, C. Li, G. Zhang. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber. Opt. Commun., 413, 236(2018).

    [177] H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, H. Zhang. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,”. Opt. Lett., 39, 4591(2014).

    [178] K. Wu, X. Zhang, J. Wang, X. Li, J. Chen. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express, 23, 11453(2015).

    [179] L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, J. Si. Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber. IEEE J. Quantum. Electron., 23, 44(2017).

    [180] R. Khazaeinezhad, S. H. Kassani, H. Jeong, D.-I Yeom, K. Oh. Femtosecond soliton pulse generation using evanescent field interaction through tungsten disulfide (WS2) film. IEEE J. Lightwave Technol., 33, 3550(2015).

    [181] R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Yoon Kim, D.-I. Yeom, K. Oh. Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nanosheets. IEEE Photon. Technol. Lett, 27, 1581(2015).

    [182] D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, J. Zhao. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep., 6, 23583(2016).

    [183] H. Ahmad, S. N. Aidit, N. A. Hassan, M. F. Ismail, Z. C. Tiu. Generation of mode-locked erbium-doped fiber laser using MoSe2 as saturable absorber. Opt. Lasers Eng., 55, 076115(2016).

    [184] D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, J. Zhao. Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber. IEEE J. Quantum Electron., 24, 1100406(2018).

    [185] K. Niu, R. Sun, Q. Chen, B. Man, H. Zhang. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photon. Res., 6, 72(2018).

    [186] D. Mao, B. Jiang, X. Gan, C. Ma, Y. Chen, C. Zhao, H. Zhang, J. Zheng, J. Zhao. Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers. Photon. Res., 3, A43(2015).

    [187] H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, S.-C. Wen. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express, 22, 6868(2014).

    [188] L. Jin, X. Ma, H. Zhang, H. Zhang, H. Chen, Y. Xu. 3 GHz passively harmonic mode-locked Er-doped fiber laser by evanescent field-based nano-sheets topological insulator. Opt. Express, 26, 31244(2018).

    [189] B. Guo, S.-H. Wang, Z.-X. Wu, Z.-X. Wang, D.-H. Wang, H. Huang, F. Zhang, Y.-Q. Ge, H. Zhang. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express, 26, 22750(2018).

    [190] J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. M. Abramski. Black phosphorus saturable absorber for ultrashort pulse generation. Appl. Phys. Lett., 107, 051108(2015).

    [191] Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, D. Fan. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater., 6, 1701166(2017).

    [192] P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, J. Hu. A practical topological insulator saturable absorber for mode-locked fiber laser. Sci. Rep., 5, 8690(2015).

    [193] P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen. A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film. Opt. Express, 23, 154(2015).

    [194] J. Boguslawski, G. Sobon, R. Zybala, J. Sotor. Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator. Opt. Lett., 40, 2786(2015).

    [195] J. Wang, J. Yin, T. He, P. Yan. Sb2Te3 mode-locked ultrafast fiber laser at 1.93 µm. Chin. Phys. B, 27, 084214(2018).

    [196] J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, S. Ruan. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber. Photon. Res., 6, 535(2018).

    [197] J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, S. Ruan. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser. Opt. Lett., 42, 5010(2017).

    [198] P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, T. Guo. Self-starting mode-locking by fiber-integrated WS2 saturable absorber mirror. IEEE J. Quantum Electron., 23, 33(2017).

    [199] H. Chen, J. Yin, J. Yang, X. Zhang, M. Liu, Z. Jiang, J. Wang, Z. Sun, T. Guo, W. Liu, P. Yan. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Opt. Lett., 42, 4279(2017).

    [200] W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, Z. Wei. 70-fs mode-locked erbium-doped fiber laser with topological insulator. Sci. Rep., 6, 19997(2016).

    [201] M. Kowalczyk, J. Bogusławski, R. Zybała, K. Mars, A. Mikuła, G. Soboń, J. Sotor. Sb2Te3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers. Opt. Mater. Express, 6, 2273(2016).

    [202] P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, J. Yang. α-In2Se3 wideband optical modulator for pulsed fiber lasers. Opt. Lett., 43, 4417(2018).

    [203] P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, G. Cao. Microfiber-based WS2-film saturable absorber for ultra-fast photonics. Opt. Mater. Express, 5, 479(2015).

    [204] W. Liu, Y.-N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L.-M. Liu, Z. Wei. Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials. Photon. Res., 6, 227(2018).

    [205] Y. Meng, C. Zhu, Y. Li, X. Yuan, F. Xiu, Y. Shi, Y. Xu, F. Wang. Three-dimensional Dirac semimetal thin-film absorber for broadband pulse generation in the near-infrared. Opt. Lett., 43, 1503(2018).

    [206] J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, G. Sobon. Sub-90 fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber. Opt. Express, 23, 27503(2015).

    [207] G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber. Opt. Express, 21, 12797(2013).

    [208] X. Wu, S. Yu, H. Yang, W. Li, X. Liu, L. Tong. Effective transfer of micron-size graphene to microfibers for photonic applications. Carbon, 96, 1114(2016).

    [209] H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, Y. Liu. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express, 22, 17341(2014).

    [210] P. Yan, H. Chen, J. Yin, Z. Xu, J. Li, Z. Jiang, W. Zhang, J. Wang, I. L. Li, Z. Sun, S. Ruan. Large-area tungsten disulfide for ultrafast photonics. Nanoscale, 9, 1871(2017).

    [211] R. Khazaeizhad, S. H. Kassani, H. Jeong, D. Yeom, K. Oh. Passively mode-locked fiber laser based on CVD WS2, JW2A.74(2015).

    [212] W. Liu, M. Liu, Y. O. Yang, H. Hou, M. Lei, Z. Wei. CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology, 29, 394002(2018).

    [213] W. Liu, M. Liu, J. Yin, H. Chen, W. Lu, S. Fang, H. Teng, M. Lei, P. Yan, Z. Wei. Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method. Nanoscale, 10, 7971(2018).

    [214] J. Wang, W. Lu, J. Li, H. Chen, Z. Jiang, J. Wang, W. Zhang, M. Zhang, I. L. Li, Z. Xu, W. Liu, P. Yan. Ultrafast thulium-doped fiber laser mode locked by monolayer WSe2. IEEE J. Quantum Electron., 24, 1100706(2018).

    [215] J. Yin, J. Li, H. Chen, J. Wang, P. Yan, M. Liu, W. Liu, W. Lu, Z. Xu, W. Zhang, J. Wang, Z. Sun, S. Ruan. Large-area highly crystalline WSe2 atomic layers for ultrafast pulsed lasers. Opt. Express, 25, 30020(2017).

    [216] J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, S. Ruan. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride. Opt. Lett., 43, 1998(2018).

    [217] K. Zhang, M. Feng, Y. Ren, F. Liu, X. Chen, J. Yang, X.-Q. Yan, F. Song, J. Tian. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber. Photon. Res., 6, 893(2018).

    [218] Q. Guo, J. Pan, Y. Liu, H. Si, Z. Lu, X. Han, J. Gao, Z. Zuo, H. Zhang, S. Jiang. Output energy enhancement in a mode-locked Er-doped fiber laser using CVD-Bi2Se3 as a saturable absorber. Opt. Express, 27, 24670(2019).

    [219] G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Graphene mode-locked fiber laser at 2.8 µm. IEEE Photon. Technol. Lett, 28, 7(2016).

    [220] K. Yin, T. Jiang, H. Yu, X. Zheng, X. Cheng, J. Hou. Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber(2015).

    [221] Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, L. Qian. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Opt. Lett., 41, 56(2015).

    [222] T. Hu, D. D. Hudson, S. D. Jackson. Stable, self-starting, passively mode-locked fiber ring laser of the 3 µm class. Opt. Lett., 39, 2133(2014).

    [223] Z. Qin, G. Xie, J. Ma, P. Yuan, L. Qian. 2.8 µm all-fiber Q-switched and mode-locked lasers with black phosphorus. Photon. Res., 6, 1074(2018).

    [224] Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, D. Shen. Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 µm wavelength. Opt. Express, 26, 8224(2018).

    [225] Z. Qin, G. Xie, H. Gu, T. Hai, P. Yuan, J. Ma, L. Qian. Mode-locked 2.8-µm fluoride fiber laser: from soliton to breathing pulse. Adv. Photon., 1, 065001(2019).

    [226] W. Du, H. Li, C. Lan, C. Li, J. Li, Z. Wang, Y. Liu. Graphene/WS2 heterostructure saturable absorbers for ultrashort pulse generation in L-band passively mode-locked fiber lasers. Opt. Express, 28, 11514(2020).

    [227] X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotech., 9, 682(2014).

    [228] Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, L. Cao. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett., 15, 486(2014).

    [229] K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016).

    [230] J. Wang, Z. Li, H. Chen, G. Deng, X. Niu. Recent advances in 2D lateral heterostructures. Nano-Micro Lett., 11, 48(2019).

    [231] W. J. Liu, M. L. Liu, B. Liu, R. G. Quhe, M. Lei, S. B. Fang, H. Teng, Z. Y. Wei. Nonlinear optical properties of MoS2-WS2 heterostructure in fiber lasers. Opt. Express, 27, 6689(2019).

    [232] Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, H. Zhang. Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photon., 9, 832(2015).

    [233] Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, J. He. Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength. Appl. Phys. Lett., 108, 221901(2016).

    [234] J. Wang, A. Coillet, O. Demichel, Z. Wang, D. Rego, A. Bouhelier, P. Grelu, B. Cluzel. Saturable plasmonic metasurfaces for laser mode locking. Light Sci. Appl., 9, 50(2020).

    [235] E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J-K Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, D.-I. Yeom. Active control of all-fibre graphene devices with electrical gating. Nat. Commun., 6, 6861(2015).

    [236] J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Sobon, J. Sotor, Z. Sun. Graphene actively mode-locked lasers. Adv. Funct. Mater., 28, 1801539(2018).

    [237] K. Chen, X. Zhou, X. Cheng, R. Qiao, Y. Cheng, C. Liu, Y. Xie, W. Yu, F. Yao, Z. Sun, F. Wang, K. Liu, Z. Liu. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat. Photon., 13, 754(2019).

    [238] S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, R. Vallée. Femtosecond fiber lasers reach the mid-infrared. Optica, 2, 623(2015).

    [239] T. Hu, S. D. Jackson, D. D. Hudson. Ultrafast pulses from a mid-infrared fiber laser. Opt. Lett., 40, 4226(2015).

    [240] C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, S. Zhu. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nat. Commun., 8, 14111(2017).

    CLP Journals

    [1] Jincheng Wei, Peng Li, Linpeng Yu, Shuangchen Ruan, Keyi Li, Peiguang Yan, Jiachen Wang, Jinzhang Wang, Chunyu Guo, Wenjun Liu, Ping Hua, Qitao Lü, "Mode-locked fiber laser of 3.5 µm using a single-walled carbon nanotube saturable absorber mirror," Chin. Opt. Lett. 20, 011404 (2022)

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Mengyu Zhang, Hao Chen, Jinde Yin, Jintao Wang, Jinzhang Wang, Peiguang Yan, "Recent development of saturable absorbers for ultrafast lasers [Invited]," Chin. Opt. Lett. 19, 081405 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers, Optical Amplifiers, and Laser Optics

    Received: Nov. 10, 2020

    Accepted: Mar. 3, 2021

    Published Online: Aug. 9, 2021

    The Author Email: Peiguang Yan (yanpg@szu.edu.cn)

    DOI:10.3788/COL202119.081405

    Topics