Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 11, 1580(2023)

Hybrid distortion image correction method based on improved U-Net networks

Wei SONG1, Li-biao SHI1, Li-jia GENG2, Zhen-ling MA1、*, and Yan-ling DU1
Author Affiliations
  • 1College of Information,Shanghai Ocean University,Shanghai 201306,China
  • 2East China Sea Standard Metrology Center,State Oceanic Administration,Shanghai 201306,China
  • show less
    Figures & Tables(10)
    Part of the images in the synthetic dataset
    Network architecture
    Structure of the spatial attention module
    Examples of the subjective evaluation experiment
    Correction and comparison experiment of optical images of GoPro cameras
    • Table 1. Camera inner parameters and distortion parameters

      View table
      View in Article

      Table 1. Camera inner parameters and distortion parameters

      fxfycxcyk1k2k3p1p2
      1219.806293.039255.107253.441-0.219 670.057 86-0.008 06-0.000 46-0.000 37
      2223.262297.586258.437255.308-0.261 510.095 77-0.018 77-0.000 370.000 17
      3302.224399.584256.349254.486-0.279 230.133 74-0.044 350.000 130.000 13
      4451.199596.817259.112255.498-0.282 330.159 47-0.083 70-0.000 990.000 02
    • Table 2. Evaluation results of different methods on the test dataset

      View table
      View in Article

      Table 2. Evaluation results of different methods on the test dataset

      MethodsMAEPSNRSSIM
      Li141.442 034.751 70.832 5
      Hosono25N/A33.494 20.633 2
      U-Net210.336 135.747 10.924 3
      PSPNet261.1834.786 70.845 9
      DeepLabV3+270.978 534.982 20.867 6
      Ours0.251 935.796 80.930 6
    • Table 3. Description of the grading scale

      View table
      View in Article

      Table 3. Description of the grading scale

      评分等级评分说明
      5与参考图像相比,感受不到差异。
      4与参考图像相比,感受到轻微差异。
      3与参考图像相比,感受到较大差异。
      2与参考图像相比,感受到很大差异。
      1与参考图像相比,感受到非常大差异。
    • Table 4. Subjective evaluation scores of different methods

      View table
      View in Article

      Table 4. Subjective evaluation scores of different methods

      LiHosonoU-NetPSPNetDeepLabV3+Ours
      MOS3.7221.9674.3393.1173.0174.597
      Variance0.9620.9430.6741.0591.1280.385
    • Table 5. Ablation experiments of loss function

      View table
      View in Article

      Table 5. Ablation experiments of loss function

      EPEL0L1L2MAEPSNRSSIM
      ×××1.123 935.046 60.854 3
      ×××0.377 035.628 10.918 3
      ×××0.281 035.772 00.926 2
      ××0.251 935.796 80.930 6
    Tools

    Get Citation

    Copy Citation Text

    Wei SONG, Li-biao SHI, Li-jia GENG, Zhen-ling MA, Yan-ling DU. Hybrid distortion image correction method based on improved U-Net networks[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(11): 1580

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Nov. 21, 2022

    Accepted: --

    Published Online: Nov. 29, 2023

    The Author Email: Zhen-ling MA (zlma@shou.edu.cn)

    DOI:10.37188/CJLCD.2022-0387

    Topics