Photonics Research, Volume. 9, Issue 10, 2024(2021)
Resonance and topological singularity near and beyond zero frequency for waves: model, theory, and effects
[1] E. Yablonovitch, T. J. Gmitter. Photonic band structure: the face-centered-cubic case. Phys. Rev. Lett., 63, 1950-1953(1989).
[2] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58, 2486-2489(1987).
[3] K. M. Ho, C. T. Chan, C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett., 65, 3152-3155(1990).
[4] S. Kubo, D. Mori, T. Baba. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Opt. Lett., 32, 2981-2983(2007).
[5] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami. Self-collimating phenomena in photonic crystals. Appl. Phys. Lett., 74, 1212-1214(1999).
[6] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami. Superprism phenomena in photonic crystals. Phys. Rev. B, 58, R10096(1998).
[7] B. E. Saleh, M. C. Teich. Fundamentals of Photonics(2007).
[8] P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, D. R. Smith. Subwavelength integrated photonics. Nature, 560, 565-572(2018).
[9] F. Capolino. Theory and Phenomena of Metamaterials(2017).
[10] T. C. Choy. Effective Medium Theory: Principles and Applications(2015).
[11] M. He, H. Sun, Q. L. He. Topological insulator: spintronics and quantum computations. Front. Phys., 14, 43401(2019).
[12] S. Shen. Topological Insulators: Dirac Equation in Condensed Matter(2018).
[13] A. Bansil, H. Lin, T. Das. Colloquium: topological band theory. Rev. Mod. Phys., 88, 021004(2016).
[14] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, S. Ryu. Classification of topological quantum matter with symmetries. Rev. Mod. Phys., 88, 035005(2016).
[15] H. Wang, S. K. Gupta, B. Xie, M. Lu. Topological photonic crystals: a review. Frontiers of Optoelectronics, 1-23(2020).
[16] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).
[17] M. Kim, Z. Jacob, J. Rho. Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl., 9, 1(2020).
[18] M. S. Rider, S. J. Palmer, S. R. Pocock, X. Xiao, P. A. Huidobro, V. Giannini. A perspective on topological nanophotonics: current status and future challenges. J. Appl. Phys., 125, 120901(2019).
[19] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).
[20] A. B. Khanikaev, G. Shvets. Two-dimensional topological photonics. Nat. Photonics, 11, 763-773(2017).
[21] M. Xiao, Z. Q. Zhang, C. T. Chan. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X, 4, 021017(2014).
[22] Q. Li, X. Jiang. Singularity induced topological transition of different dimensions in one synthetic photonic system. Opt. Commun., 440, 32-40(2019).
[23] Q. Li, Y. Zhang, X. Jiang. Two classes of singularities and novel topology in a specially designed synthetic photonic crystals. Opt. Express, 27, 4956-4975(2019).
[24] W. Zhu, Y.-Q. Ding, J. Ren, Y. Sun, Y. Li, H. Jiang, H. Chen. Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials. Phys. Rev. B, 97, 195307(2018).
[25] A. V. Poshakinskiy, A. N. Poddubny, M. Hafezi. Phase spectroscopy of topological invariants in photonic crystals. Phys. Rev. A, 91, 043830(2015).
[26] E. J. Bergholtz, J. C. Budich, F. K. Kunst. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 93, 015005(2021).
[27] X. Cui, K. Ding, J.-W. Dong, C. T. Chan. Exceptional points and their coalescence of PT-symmetric interface states in photonic crystals. Phys. Rev. B, 100, 115412(2019).
[28] W. Zhu, X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, H. Chen. Simultaneous observation of a topological edge state and exceptional point in an open and non-Hermitian acoustic system. Phys. Rev. Lett., 121, 124501(2018).
[29] P. Markos, C. M. Soukoulis. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials(2008).
[30] [30] 30For example, when frequency is close to zero, the reflection coefficient of an FP cavity is r=2i sin(kbdb)(ka2−kb2)(ka−kb)2 exp(ikbdb)−(ka+kb)2 exp(−ikbdb)≈2ikbdb(εb−εa)4εaεb=iωdb(εb−εa)2εac.
[31] L. Fan, Z. Chen, Y.-C. Deng, J. Ding, H. Ge, S.-Y. Zhang, Y.-T. Yang, H. Zhang. Nonlinear effects in a metamaterial with double negativity. Appl. Phys. Lett., 105, 041904(2014).
[32] J.-B. Xia. Quantum waveguide theory for mesoscopic structures. Phys. Rev. B, 45, 3593-3599(1992).
[33] Q. Wang, M. Xiao, H. Liu, S. Zhu, C. T. Chan. Optical interface states protected by synthetic Weyl points. Phys. Rev. X, 7, 031032(2017).
[34] P. A. Kalozoumis, G. Theocharis, V. Achilleos, S. Félix, O. Richoux, V. Pagneux. Finite-size effects on topological interface states in one-dimensional scattering systems. Phys. Rev. A, 98, 023838(2018).
[35] W. Kohn. Analytic properties of Bloch waves and Wannier functions. Phys. Rev., 115, 809-821(1959).
[36] K. Busch, C. Blum, A. M. Graham, D. Hermann, M. Köhl, P. Mack, C. Wolff. The photonic Wannier function approach to photonic crystal simulations: status and perspectives. J. Mod. Opt., 58, 365-383(2011).
[37] M. B. de Paz, M. G. Vergniory, D. Bercioux, A. Garca-Etxarri, B. Bradlyn. Engineering fragile topology in photonic crystals: topological quantum chemistry of light. Phys. Rev. Res., 1, 032005(2019).
[38] K.-M. Luk, K.-W. Leung. Dielectric Resonator Antennas(2003).
[39] X. Hu, C. T. Chan, J. Zi. Two-dimensional sonic crystals with Helmholtz resonators. Phys. Rev. E, 71, 055601(2005).
Get Citation
Copy Citation Text
Langlang Xiong, Yu Zhang, Xunya Jiang, "Resonance and topological singularity near and beyond zero frequency for waves: model, theory, and effects," Photonics Res. 9, 2024 (2021)
Category: Physical Optics
Received: Feb. 22, 2021
Accepted: Aug. 17, 2021
Published Online: Oct. 18, 2021
The Author Email: Xunya Jiang (jiangxunya@fudan.edu.cn)