Acta Optica Sinica, Volume. 31, Issue 9, 900139(2011)

Recent Progress of Study on Photonic Crystal Fiber

Yu Chongxiu*, Yuan Jinhui, and Shen Xiangwei
Author Affiliations
  • [in Chinese]
  • show less
    References(41)

    [1] [1] T. A. Birks, D. Mogilevtsev, J. C. Knight et al.. Dispersion compensation using single-material fibers [J]. IEEE Photon. Technol. Lett., 1999, 11(6): 674~676

    [2] [2] P. J. Roberts, B. J. Mangan, H. Sabert et al.. Control of dispersion in photonic crystal fibers [J]. J. Opt. Fiber. Commun., 2005, 2(12): 435~461

    [3] [3] G. Renversez, P. Boyer, A. Sagrini. Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling[J]. Opt. Express, 2006, 14(12): 5682~5687

    [4] [4] Z. H. Zhang, Y. F. Shi, B. M. Bian et al.. Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding [J]. Opt. Express, 2008, 16(3): 1915~1922

    [5] [5] A. Huttunen, P. Trm. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and larger mode area [J]. Opt. Express, 2005, 13(2): 627~635

    [6] [6] Z. H. Zhang, Y. F. Shi, B. M. Bian et al.. Larger negative dispersion in dual-core photonic crystal fibers based on optional mode coupling [J]. IEEE photon. Technol. Lett., 2008, 20(16): 1402~1404

    [7] [7] A. Cerqueira, F. Luan, C. M. B. Cordeiro et al.. Hybrid photonic crystal fiber [J]. Opt. Express, 2006, 14(2): 926~931

    [8] [8] P. J. Roberts, D. P. Williams, B. J. Mangan et al.. Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround [J]. Opt. Express, 2005, 13(20): 8277~8285

    [9] [9] A. Fuerbach, P. Steinvurzel, J. A. Dolger et al.. Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant guiding photonic crystal fibers [J]. Opt. Express, 2005, 13(8): 2977~2987

    [10] [10] G. Bouwmans, L. Bigot, Y. Quiquempois et al.. Fabrication and characterization of an all solid 2D photonic bandgap fiber with a low-loss region (<20 dB/km) around 1550 nm [J]. Opt. Express, 2005, 13(21): 8452~8459

    [11] [11] J. H. Yuan, X. Z. Sang, C. X. Yu et al.. Theoretical investigation of band-gap and mode characteristics of anti-resonance guiding photonic crystal fibres [J]. Chin. Phys. B, 2011, 20(2): 024213

    [12] [12] R. F. Cregan, B. J. Mangan, J. C. Knight et al.. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537~1539

    [13] [13] G. Bouwmans, F. Luan. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength [J]. Opt. Express, 2003, 11(14): 1613~1620

    [14] [14] S. O. Konorv, V. P. Mitrokhin, A. B. Fedotov et al.. Laser ablation of dental tissues with picosecond pulses of 1.06 m radiation transmitted through a hollow-core photonic-crystal fiber [J]. Appl. Opt., 2004, 43(11): 2251~2256

    [15] [15] F. Couny, F. Benabid, P. J. Roberts et al.. Indentification of Bloch-modes in hollow-core photonic crystal fibers cladding [J]. Opt. Express, 2007, 15(2): 325~338

    [16] [16] N. M. Litchinitser, S. C. Dunn, B. Usner et al.. Resonances in microstructured optical waveguides [J]. Opt. Express, 2003, 11(10): 1243~1251

    [17] [17] T. A. Birks, G. J. Pearce, D. M. Bird. Approximate band structure calculation for photonic bandgap fibres [J]. Opt. Express, 2006, 14(20): 9483~9490

    [18] [18] J. E. Sharping, M. Fiorentino, A. Coker et al.. Four-wave mixing in microstructure fiber [J]. Opt. Lett., 2001, 26(14): 1048~1050

    [19] [19] T. Sloanes, K. McEwan, B. Lowans et al.. Optimisation of high average power optical parametric generation using a photonic crystal fiber [J]. Opt. Express, 2008, 16(24): 19724~19733

    [20] [20] S. O. Konorov, D. A. Akimov, A. A. Ivanov et al.. Anti-Stokes generation in guided modes of photonic-crystal fibers modified with an array of nanoholes [J]. Laser Phys. Lett., 2004, 1(8): 402~405

    [21] [21] T. T. Yang, C. Shu, C. Lin. Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber [J]. Opt. Express, 2005, 13(14): 5409~5415

    [22] [22] S. Asimakis, P. Petropoulos, F. Poletti et al.. Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers [J]. Opt. Express, 2007, 15(2): 596~601

    [23] [23] L. Provino, J. M. Dudley, H. Maillotte et al.. Compact broadband continuum source based on microchip laser pumped microstructured fibre [J]. Electron. Lett., 2001, 37(9): 558~560

    [24] [24] J. H. Yuan, X. Z. Sang, C. X. Yu et al.. Anti-Stokes signal conversion in the higher-order modes of photonic crystal fiber [J]. J. Optoelectron. Adv. Mater.-Rapid Commun., 2010, 4(1): 23~27

    [25] [25] J. M. Dudley, L. Provino, N. Grossard et al.. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping [J]. J. Opt. Soc. Am. B, 2002, 19(4): 765~771

    [26] [26] D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov et al.. Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber [J]. Opt. Lett., 2003, 28(20): 1948~1950

    [27] [27] W. Wang, F. Gao, L.T. Hou et al.. Anti-Stokes line in an index-guiding photonic crystal fibre with two zero-dispersion wavelengths [J]. Chin. Phys. Lett., 2008, 25(6): 2055~2057

    [28] [28] M. L. Hu, C.Y. Wang, Y. J. Song et al.. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers [J]. Opt. Express, 2006, 14(3): 1189~1198

    [29] [29] J. H. Yuan, X. Z. Sang, C. X. Yu et al.. Highly efficient wavelength-tunable anti-Stokes signal conversion of femtosecond pulses in the fundamental mode of photonic crystal fiber [J]. IEEE J. Quant. Electron., 2010, 46(5): 728~733

    [30] [30] J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm [J]. Opt. Lett., 2000, 25(1): 25~27

    [31] [31] T. Yamamoto, H. Kubota, S. Kawanishi et al.. Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber [J]. Opt. Express, 2003, 11(13): 1537~1540

    [32] [32] S. Coen, A. H. L. Chau, R. Leonhardt et al.. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber [J]. Opt. Lett., 2001, 26(17): 1356~1358

    [33] [33] L. Tartara, I. Cristiani, V. Degiorgio. Blue light and infrared continuum generation by soliton fission in a microstructured fiber [J]. Appl. Phys. B, 2003, 77(2): 307~311

    [34] [34] I. Cristiani, R. Tediosi, L. Tartara et al.. Dispersive wave generation by solitons in microstructured optical fibers [J]. Opt. Express, 2004, 12(1): 124~135

    [35] [35] G. Q. Chang, L. J. Chen, F. X. Krtner. Highly efficient cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation [J]. Opt. Lett., 2010, 35(14): 2361~2363

    [36] [36] W. Wadsworth, N. Joly, J.C. Knight et al.. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers [J]. Opt. Express, 2004, 12(2): 299~309

    [37] [37] R. Cherif, M. Zghal, L. Tartara et al.. Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber [J]. Opt. Express, 2008, 16(3): 2147~2152

    [38] [38] J. C. Travers, A. B. Rulkov, B. A. Cumberland et al.. Visible supercontinuum generation in photonic crystal fibers with a photonic fibers with a 400 W continuous wave fiber laser [J]. Opt. Express, 2008, 16(19): 14435~14447

    [39] [39] M. H. Frosz, P. M. Moselund, P. D. Rasmussen et al.. Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition [J]. Opt.Express, 2008, 16(25): 21076~21086

    [40] [40] B. A. Cumberland, J. C. Travers, S. V. Popov et al.. Toward visible cw-pumped supercontinua [J]. Opt. Lett., 2008, 33(18): 2122~2124

    [41] [41] Yuan Jinhui. Study on Characteristics of Photonic Crysal Fibers and its Applications [D]. Beijing: Beijing University of Posts and Telecommunications, 2011

    CLP Journals

    [1] He Xiaoli, Chen Zhe, Yu Jianhui, Zeng Yingxin, Luo Yunhan, Zhang Jun, Tang Jieyuan, Wei Qingsong, Xie Junxin, Huang Huacai. Theoretical Analysis of Optical Propagation Characteristics of Side-Polished Photonic Crystal Fiber[J]. Acta Optica Sinica, 2014, 34(3): 306003

    [2] Huang Tubin, Shi Jielong, Pu Junhui, Chen Yuanyuan. Long Period Gratings Fabrication by Arc Discharge in Photonic Crystal Fibers[J]. Acta Optica Sinica, 2014, 34(6): 605002

    [3] Ji Yushen, Fu Guangwei, Fu Xinghu, Shen Yuan, Bi Weihong. Sensing Characteristics of Mach-Zehnder Interferometer Based on the Fused Tapered Photonic Crystal Fiber Sensor[J]. Acta Optica Sinica, 2013, 33(10): 1006005

    [4] Yang Qing, Shi Jielong, Sun Weisheng, Huang Tubin. Low-Loss Splicing Based on the Technique of Mode-Field Matching by Fusion Taper Rig[J]. Acta Optica Sinica, 2012, 32(10): 1006001

    [5] Zhou Fei, Fei Hongming, Chen Zhihui, Liu Xin, Yang Yibiao. A High Efficiency Photonic Crystal Polarization Beam Splitter[J]. Laser & Optoelectronics Progress, 2013, 50(6): 62304

    [6] Song Xiaoli, Bai Yukun, Ren Guangjun, Ma Xiurong, Lu Ying, Yao Jianquan. Analysis of Temperature Sensing Characteristics of a Long-Period Grating Formed in a Liquid-Filled Photonic Crystal Fiber[J]. Chinese Journal of Lasers, 2011, 38(12): 1205007

    [7] Zhang Juhui, Hu Minglie, Liu Bowen, Chai Lu, Wang Qingyue. Amplification of Dissipative Soliton and Supercontinuum Generation[J]. Chinese Journal of Lasers, 2014, 41(4): 405003

    [8] Xu Huizhen, Zhou Changjie. Highly Nonlinear All-Solid Photonic Crystal Fibers with Low Dispersion Slope[J]. Chinese Journal of Lasers, 2012, 39(11): 1106001

    [9] Dong Li, Ren Guangjun, Hu Haiyan, Wu Yudeng, Yao Jianquan. Surface Plasmon Resonance Sensing Characteristics Based on Photonic Crystal Fiber[J]. Chinese Journal of Lasers, 2012, 39(s2): 205003

    [10] Wang He, Sun Qizhen, Li Xiaolei, Liu Deming. Progress in Optical Fiber Interferometer Based Distributed Vibration Sensing Technology[J]. Laser & Optoelectronics Progress, 2013, 50(2): 20004

    [11] Zhou Dechun, Bai Xuemei, Zhou Hang. Preparation of the Large-Mode-Area Ytterbium-Doped Microstructure Fibre and Laser Performance[J]. Chinese Journal of Lasers, 2014, 41(12): 1205006

    [12] Zhang Yin, Chen Mingyang, Zhang Yongkang. Investigation of a Novel Large-Mode-Area Photonic Crystal Fiber Transmission System and Its Transmission Characteristics[J]. Chinese Journal of Lasers, 2012, 39(12): 1205001

    [13] Zhang Lu. Low-Loss Lens-Coupling Technique on Photonic Crystal Fibers[J]. Acta Optica Sinica, 2014, 34(1): 106006

    [14] Tong Kai, Zeng Wenzhi, Gu Chaocong, Wang Huibo, Lu Jianru. Effects of Coating on Sensitivity of Photonic Crystal Biosensor[J]. Chinese Journal of Lasers, 2013, 40(2): 214002

    [15] Li Hongbing, Jin Yanyun, Fang Jinghuai, Shi Jianzhen, Cui Ronghua. Temperature Sensing of Photonic Crystal Fiber Filled with Liquid via SBS[J]. Laser & Optoelectronics Progress, 2012, 49(12): 120602

    Tools

    Get Citation

    Copy Citation Text

    Yu Chongxiu, Yuan Jinhui, Shen Xiangwei. Recent Progress of Study on Photonic Crystal Fiber[J]. Acta Optica Sinica, 2011, 31(9): 900139

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 2, 2011

    Accepted: --

    Published Online: Aug. 29, 2011

    The Author Email: Chongxiu Yu (cxyu@bupt.edu.cn)

    DOI:10.3788/aos201131.0900139

    Topics