Acta Optica Sinica, Volume. 31, Issue 9, 900139(2011)
Recent Progress of Study on Photonic Crystal Fiber
[1] [1] T. A. Birks, D. Mogilevtsev, J. C. Knight et al.. Dispersion compensation using single-material fibers [J]. IEEE Photon. Technol. Lett., 1999, 11(6): 674~676
[2] [2] P. J. Roberts, B. J. Mangan, H. Sabert et al.. Control of dispersion in photonic crystal fibers [J]. J. Opt. Fiber. Commun., 2005, 2(12): 435~461
[3] [3] G. Renversez, P. Boyer, A. Sagrini. Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling[J]. Opt. Express, 2006, 14(12): 5682~5687
[4] [4] Z. H. Zhang, Y. F. Shi, B. M. Bian et al.. Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding [J]. Opt. Express, 2008, 16(3): 1915~1922
[5] [5] A. Huttunen, P. Trm. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and larger mode area [J]. Opt. Express, 2005, 13(2): 627~635
[6] [6] Z. H. Zhang, Y. F. Shi, B. M. Bian et al.. Larger negative dispersion in dual-core photonic crystal fibers based on optional mode coupling [J]. IEEE photon. Technol. Lett., 2008, 20(16): 1402~1404
[7] [7] A. Cerqueira, F. Luan, C. M. B. Cordeiro et al.. Hybrid photonic crystal fiber [J]. Opt. Express, 2006, 14(2): 926~931
[8] [8] P. J. Roberts, D. P. Williams, B. J. Mangan et al.. Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround [J]. Opt. Express, 2005, 13(20): 8277~8285
[9] [9] A. Fuerbach, P. Steinvurzel, J. A. Dolger et al.. Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant guiding photonic crystal fibers [J]. Opt. Express, 2005, 13(8): 2977~2987
[10] [10] G. Bouwmans, L. Bigot, Y. Quiquempois et al.. Fabrication and characterization of an all solid 2D photonic bandgap fiber with a low-loss region (<20 dB/km) around 1550 nm [J]. Opt. Express, 2005, 13(21): 8452~8459
[11] [11] J. H. Yuan, X. Z. Sang, C. X. Yu et al.. Theoretical investigation of band-gap and mode characteristics of anti-resonance guiding photonic crystal fibres [J]. Chin. Phys. B, 2011, 20(2): 024213
[12] [12] R. F. Cregan, B. J. Mangan, J. C. Knight et al.. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537~1539
[13] [13] G. Bouwmans, F. Luan. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength [J]. Opt. Express, 2003, 11(14): 1613~1620
[14] [14] S. O. Konorv, V. P. Mitrokhin, A. B. Fedotov et al.. Laser ablation of dental tissues with picosecond pulses of 1.06 m radiation transmitted through a hollow-core photonic-crystal fiber [J]. Appl. Opt., 2004, 43(11): 2251~2256
[15] [15] F. Couny, F. Benabid, P. J. Roberts et al.. Indentification of Bloch-modes in hollow-core photonic crystal fibers cladding [J]. Opt. Express, 2007, 15(2): 325~338
[16] [16] N. M. Litchinitser, S. C. Dunn, B. Usner et al.. Resonances in microstructured optical waveguides [J]. Opt. Express, 2003, 11(10): 1243~1251
[17] [17] T. A. Birks, G. J. Pearce, D. M. Bird. Approximate band structure calculation for photonic bandgap fibres [J]. Opt. Express, 2006, 14(20): 9483~9490
[18] [18] J. E. Sharping, M. Fiorentino, A. Coker et al.. Four-wave mixing in microstructure fiber [J]. Opt. Lett., 2001, 26(14): 1048~1050
[19] [19] T. Sloanes, K. McEwan, B. Lowans et al.. Optimisation of high average power optical parametric generation using a photonic crystal fiber [J]. Opt. Express, 2008, 16(24): 19724~19733
[20] [20] S. O. Konorov, D. A. Akimov, A. A. Ivanov et al.. Anti-Stokes generation in guided modes of photonic-crystal fibers modified with an array of nanoholes [J]. Laser Phys. Lett., 2004, 1(8): 402~405
[21] [21] T. T. Yang, C. Shu, C. Lin. Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber [J]. Opt. Express, 2005, 13(14): 5409~5415
[22] [22] S. Asimakis, P. Petropoulos, F. Poletti et al.. Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers [J]. Opt. Express, 2007, 15(2): 596~601
[23] [23] L. Provino, J. M. Dudley, H. Maillotte et al.. Compact broadband continuum source based on microchip laser pumped microstructured fibre [J]. Electron. Lett., 2001, 37(9): 558~560
[24] [24] J. H. Yuan, X. Z. Sang, C. X. Yu et al.. Anti-Stokes signal conversion in the higher-order modes of photonic crystal fiber [J]. J. Optoelectron. Adv. Mater.-Rapid Commun., 2010, 4(1): 23~27
[25] [25] J. M. Dudley, L. Provino, N. Grossard et al.. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping [J]. J. Opt. Soc. Am. B, 2002, 19(4): 765~771
[26] [26] D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov et al.. Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber [J]. Opt. Lett., 2003, 28(20): 1948~1950
[27] [27] W. Wang, F. Gao, L.T. Hou et al.. Anti-Stokes line in an index-guiding photonic crystal fibre with two zero-dispersion wavelengths [J]. Chin. Phys. Lett., 2008, 25(6): 2055~2057
[28] [28] M. L. Hu, C.Y. Wang, Y. J. Song et al.. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers [J]. Opt. Express, 2006, 14(3): 1189~1198
[29] [29] J. H. Yuan, X. Z. Sang, C. X. Yu et al.. Highly efficient wavelength-tunable anti-Stokes signal conversion of femtosecond pulses in the fundamental mode of photonic crystal fiber [J]. IEEE J. Quant. Electron., 2010, 46(5): 728~733
[30] [30] J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm [J]. Opt. Lett., 2000, 25(1): 25~27
[31] [31] T. Yamamoto, H. Kubota, S. Kawanishi et al.. Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber [J]. Opt. Express, 2003, 11(13): 1537~1540
[32] [32] S. Coen, A. H. L. Chau, R. Leonhardt et al.. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber [J]. Opt. Lett., 2001, 26(17): 1356~1358
[33] [33] L. Tartara, I. Cristiani, V. Degiorgio. Blue light and infrared continuum generation by soliton fission in a microstructured fiber [J]. Appl. Phys. B, 2003, 77(2): 307~311
[34] [34] I. Cristiani, R. Tediosi, L. Tartara et al.. Dispersive wave generation by solitons in microstructured optical fibers [J]. Opt. Express, 2004, 12(1): 124~135
[35] [35] G. Q. Chang, L. J. Chen, F. X. Krtner. Highly efficient cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation [J]. Opt. Lett., 2010, 35(14): 2361~2363
[36] [36] W. Wadsworth, N. Joly, J.C. Knight et al.. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers [J]. Opt. Express, 2004, 12(2): 299~309
[37] [37] R. Cherif, M. Zghal, L. Tartara et al.. Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber [J]. Opt. Express, 2008, 16(3): 2147~2152
[38] [38] J. C. Travers, A. B. Rulkov, B. A. Cumberland et al.. Visible supercontinuum generation in photonic crystal fibers with a photonic fibers with a 400 W continuous wave fiber laser [J]. Opt. Express, 2008, 16(19): 14435~14447
[39] [39] M. H. Frosz, P. M. Moselund, P. D. Rasmussen et al.. Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition [J]. Opt.Express, 2008, 16(25): 21076~21086
[40] [40] B. A. Cumberland, J. C. Travers, S. V. Popov et al.. Toward visible cw-pumped supercontinua [J]. Opt. Lett., 2008, 33(18): 2122~2124
[41] [41] Yuan Jinhui. Study on Characteristics of Photonic Crysal Fibers and its Applications [D]. Beijing: Beijing University of Posts and Telecommunications, 2011
Get Citation
Copy Citation Text
Yu Chongxiu, Yuan Jinhui, Shen Xiangwei. Recent Progress of Study on Photonic Crystal Fiber[J]. Acta Optica Sinica, 2011, 31(9): 900139
Category: Reviews
Received: Aug. 2, 2011
Accepted: --
Published Online: Aug. 29, 2011
The Author Email: Chongxiu Yu (cxyu@bupt.edu.cn)