Acta Optica Sinica, Volume. 30, Issue 1, 153(2010)
New Approach to Robot Localization in Real-Time Based on Visual Manifold Regularization
[1] [1] T. Bailey,H. Durrant-Whyte. Simultaneous localisation and mapping (SLAM):part II[J]. IEEE Robotics & Automation Magazine,2006,2(13):99-110
[2] [2] H. Durrant-Whyte,T. Bailey. Simultaneous localization and mapping:part I[J]. IEEE Robotics & Automation Magazine,2006,2(13):99-110
[3] [3] S. Se,D. G. Lowe,J. J. Little. Vision-based global localization and mapping for mobile robots[J]. Robotics,IEEE Transactions on,2005,3(21):364-375
[6] [6] F. Labrosse. The visual compass:performance and limitations of an appearance-based method[J]. J. Field Robotics,2006,10(23):913-941
[7] [7] A. C. Murillo,J. J. Guerrero,C. Sagues. SURF features for efficient robot localization with omnidirectional images[C]. IEEE International Conference on Robotics and Automation,2007:3901-3907
[8] [8] A. J. Davison,I. D. Reid,N. D. Molton et al.. MonoSLAM:Real-time single camera SLAM[J]. Pattern Analysis and Machine Intelligence,IEEE Transactions on,2007,6(29):1052-1067
[9] [9] E. Eade,T. Drummond. Edge landmarks in monocular SLAM[J]. Image Vision Comput.,2008,In Press,Corrected Proof)
[10] [10] F. Linker,M. Ishikawa. Real-time appearance-based Monte Carlo localization[J]. Robotics and Autonomous Systems,2006,3(54):205-220
[11] [11] K. L. Ho,P. Newman. Loop closure detection in SLAM by combining visual and spatial appearance[J]. Robotics and Autonomous Systems,2006,9(54):740-749
[12] [12] M. Cummins,P. Newman. FAB-MAP:probabilistic localization and mapping in the space of appearance[J]. Int. J. Rob. Res.,2008,6(27):647-665
[13] [13] H. Wu,S. Y. Qin. A new method of distance estimation for robot localization in real environment based on manifold learning[C]. Proc. 2007 Internat. Conf. on Wavelet Analysis and Pattern Recognition. Beijing,China:2007:589-590
[15] [15] R. Hartley,A. Zisserman. Multiple View Geometry in Computer Vision[M]. University of Oxford,UK:Cambridge University Press,2004:189-193
[16] [16] R. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. Robotics and Automation,IEEE J. 1987,4(3):323-344
[17] [17] M. Belkin,I. Matveeva,P. Niyogi. Regression and regularization on large graphs[C]. Proc 17th Annual Conference on Learning Theory. 2004:824-831
[18] [18] M. Belkin,P. Niyogi,V. Sindhwani. Manifold regularization:a geometric framework for learning from labeled and unlabeled examples[J]. The J. Machine Learning Research,2006,7:2399-2434
[19] [19] V. Sindhwani,M. Belkin,P. Niyogi. Geometric Basis of Semi-Supervised Learning[M]. MIT Press,2006:209-226
[20] [20] M. Belkin,P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering[J]. Advances in Neural Information Processing Systems,2002,14:585-591
[21] [21] X. Zhu,Z. Ghahramani,J. Lafferty. Semi-supervised learning using Gaussian fields and harmonic functions[C]. ICML-03,20th Internat. Conf. on Machine Learning,Washington,DC. 2003:912-919
Get Citation
Copy Citation Text
Wu Hua, Qin Shiyin. New Approach to Robot Localization in Real-Time Based on Visual Manifold Regularization[J]. Acta Optica Sinica, 2010, 30(1): 153
Category: Machine Vision
Received: Apr. 9, 2009
Accepted: --
Published Online: Feb. 1, 2010
The Author Email: Hua Wu (wishsand@gmail.com)