Journal of Optoelectronics · Laser, Volume. 35, Issue 6, 604(2024)
Research on detection algorithm for underwater object based on frequency domain attention
[1] [1] ZHANG S, WANG T, DONG J, et al. Underwater image enhancement via extended multi-scale retinex[J]. Neuro Computing, 2017, 245: 1-9.
[2] [2] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[3] [3] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2022-10-17]. https://arxiv.org/abs/2004.10934.
[4] [4] ANCUTI C O, ANCUTI C, VLEESCHOUWER C D, et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2018, 27(1): 379-393.
[6] [6] SALMAN A, SIDDIQUI S A, SHAFAIT F, et al. Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system[J]. ICES Journal of Marine Science, 2020, 77(4): 1295-1307.
[7] [7] LIN W H, ZHONG J X, LIU S, et al. RoIMix: proposal-fusion among multiple images for underwater object detection[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 4-9, 2020, Virtual Conference. New York: IEEE, 2020: 2588-2592.
[8] [8] CHEN L, LIU Z, TONG L, et al. Underwater object detection using invert multi-class Adaboost with deep learning[C]//2020 International Joint Conference on Neural Networks (IJCNN), July 19-24, 2020, Glasgow, UK. New York: IEEE, 2020: 1-8.
[9] [9] FAN B, CHEN W, CONG Y, et al. Dual refinement underwater object detection network[C]//European Conference on Computer Vision, August 23-28, 2020, Glasgow, UK. Cham: Springer, 2020: 275-291.
[10] [10] LIU H, SONG P, DING R. Towards domain generalization in underwater object detection[C]//IEEE International Conference on Image Processing, October 25-28, 2020, Abu Dhabi, United Arab Emirates. New York: IEEE, 2020: 1971-1975.
[11] [11] WANG Z, LIU C, WANG S, et al. UDD: an underwater open-sea farm object detection dataset for underwater robot picking[EB/OL].(2021-07-28)[2022-10-17]. https://arxiv.org/abs/2003.01446v1.
[12] [12] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, June 18-22, 2018, Salt Lake City, USA. New York: IEEE, 2018: 7132-7141.
[13] [13] HU J, SHEN L, ALBANIE S, et al. Gather-excite: exploiting feature context in convolutional neural networks[C]//Advances in Neural Information Processing Systems, December 3-8, 2018, Montreal, Canada. Red Hook: Curran Associates Inc, 2018: 9423-9433.
[14] [14] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//European Conference on Computer Vision (ECCV), September 8-14, 2018, Munich, Germany. Singapore: Springer, 2018: 3-19.
[15] [15] QIN Z, ZHANG P, WU F, et al. FcaNet: frequency channel attention networks[C]//IEEE International Conference on Computer Vision, October 11-17, 2021, Montreal, Canada. New York: IEEE, 2021: 783-792.
[16] [16] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, June 18-22, 2018, Salt Lake City, USA. New York: IEEE, 2018: 8759-8768.
[17] [17] LI B, REN W, FU D, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2018, 28(1): 492-505.
Get Citation
Copy Citation Text
ZHANG Tian, WEN Xianbin, XUE Yanbing, YUAN Liming, XU Haixia, SHI Furong. Research on detection algorithm for underwater object based on frequency domain attention[J]. Journal of Optoelectronics · Laser, 2024, 35(6): 604
Category:
Received: Nov. 1, 2022
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: WEN Xianbin (xbwen@email.tjut.edu.cn)