Journal of Quantum Optics, Volume. 27, Issue 3, 253(2021)
Review of Quantum Microwave and Its Receiving
[1] [1] Johansson G. Viewpoint: Entangled microwaves split Up[J]. Physics, 2012, 5: 103120. DOI: 10.1103/Physics.5.120.
[2] [2] Herrmann L G, Portier F, Roche P, et al. Carbon nanotubes as cooper pair beam splitters[J]. Phys Rev Lett, 2010, 104: 026801. DOI: 10.1103/PhysRevLett.104.026801.
[3] [3] Recher P, Sukhorukov E V, Loss D. Andreev tunneling, Coulomb blockade, and resonant transport of nonlocal spin-entangled electrons[J]. Phys Rev B, 2000, 63(16): 165314. DOI: 10.1103/PhysRevB.63.165314.
[4] [4] Ou Z Y, Pereira S F, Kimble H J, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Phys Rev Lett, 1992, 68: 3663. DOI: 10.1103/PhysRevLett.68.3663.
[6] [6] Braunstein S L, Loock P V. Quantum information with continuous variables[J]. Rev Mod Phys, 2005, 77: 513-577. DOI: 10.1103/RevModPhys.77.513.
[7] [7] Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement[J]. Rev Mod Phys, 2009, 81: 865-931. DOI: 10.1103/RevModPhys.81.865.
[9] [9] Lanzagorta M. Quantum radar[M]. London: Morgan [EQUATION]Claypool Publishers. 2011. DOI: 10.2200/S00384ED1V01Y2011 10QMC005.
[10] [10] Arndt M, Hornberger K, Zeilinger A. Probing the limits of the quantum world[J]. Phys World, 2005, 18(3): 35-40. DOI: 10.1088/2058-7058/18/3/28.
[11] [11] Zagoskin A M, Il’ichev E, McMutcheon M W, et al. Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit[J]. Phys Rev Lett, 2008, 101: 253602. DOI: 10.1103/PhysRevLett.101.253602.
[12] [12] Eichler C, Bozyigit D, Lang C, et al. Observation of two-mode squeezing in the microwave frequency domain[J]. Phys Rev Lett, 2011, 107(11): 113601. DOI: 10.1103/PhysRevLett.107.113601.
[13] [13] Johansson J R, Johansson G, Wilson C M, et al. Nonclassical microwave radiation from the dynamical Casimir effect[J]. Phys Rev A, 2012, 87: 043804. DOI: 10.1103/PhysRevA.87.043804.
[15] [15] Peng Z H, Graaf S E D, Tsai J S, et al. Tuneable on-demand single-photon source in the microwave range[J]. Nat Commun, 2016, 7: 12588. DOI: 10.1038/ncomms12588.
[16] [16] Emary C, Trauzettel B, Beenakker C W J. Emission of polarization-entangled microwave photons from a pair of quantum dots[J]. Phys Rev Lett, 2005, 95(12): 12740. DOI: 10.1103/PhysRevLett.95.127401.
[17] [17] Dambach S, Kubala B, Ankerhold J. Generating entangled quantum microwaves in a Josephson-photonics device[J]. New J Phys, 2016, 19(2): 023027. DOI: 10.1088/1367-2630/aa5bb6.
[18] [18] Pielawa S, Morigi G, Vitali D, Davidovich L. Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir[J]. Phys Rev Lett, 2007, 98: 240401. DOI: 10.1103/PhysRevLett.98.240401.
[22] [22] Regal C A, Lehnert K W J. From cavity electromechanics to cavity optomechanics[J]. J Phys: Conf Ser, 2011, 264: 012025. DOI: 10.1088/1742-6596/264/1/012025.
[26] [26] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physcial reality be considered complete?[J]. Phys Rev, 1935, 47: 777-780. DOI: 10.1103/PhysRev.47.777.
[30] [30] Nakamura Y, Yamamoto T. Breakthroughs in photonics 2012: Breakthroughs in microwave quantum photonics in superconducting circuits[J]. IEEE Photonics J, 2013, 5(2): 0701406. DOI: 10.1109/JPHOT.2013.2252005.
[31] [31] Meschede D, Walther H, Muller G. One-atom maser[J]. Phys Rev Lett, 1985, 54(6): 551-554. DOI: 10.1103/physrevlett.54.551.
[34] [34] Bozyigit D, Lang C, Steffen L, et al. Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors[J]. Nat Phys, 2011, 7(2): 154-158. DOI: 10.1038/nphys1845.
[35] [35] Eichler C, Bozyigit D, Lang C, et al. Experimental state tomography of itinerant single microwave photons[J]. Phys Rev Lett, 2011, 106(24): 220503. DOI: 10.1103/PhysRevLett.106.249901.
[36] [36] Emary C, Trauzettel B, Beenakker C W J. Emission of polarization-entangled microwave photons from a pair of quantum dots[J]. Phys Rev Lett, 2005, 95(12): 127401. DOI: 10.1103/PhysRevLett.95.127401.
[37] [37] Dambach S, Kubala B, Ankerhold J. Generating entangled quantum microwaves in a Josephson-photonics device[J]. New J Phys, 2016, 19(2): 023027. DOI: 10.1088/1367-2630/aa5bb6.
[38] [38] Palomaki T A, Teufel J D, Simmonds R W, et al. Entangling mechanical motion with microwave fields[J]. Science, 2013, 342(6159): 710-713. DOI: 10.1126/science.1244563.
[39] [39] Lin T. Optoelectromechanical transducer: Reversible conversion between microwave and optical photons[J]. Ann Phys-Berlin, 2015, 527(1-2): 1-14. DOI: 10.1002/andp.201400116.
[40] [40] Menzel E P, Candia R D, Deppe F, et al. Path entanglement of continuous-variable quantum microwaves[J]. Phys Rev Lett, 2012, 109(25): 250502. DOI: 10.1103/PhysRevLett.109.250502.
[41] [41] Hoffmann E, Deppe F, Niemczyk T, et al. A superconducting [EQUATION]hybrid ring coupler for circuit quantum electrodynamics[J]. Appl Phys Lett, 2010, 97(22): 222508. DOI: 10.1063/1.3522650.
[42] [42] Caspar O K, Erno D, Juha-Matti P, et al. Noiseless quantum measurement and squeezing of microwave fields utilizing mechanical vibrations[J]. Phys Rev Lett, 2017, 118: 103601. DOI: 10.1103/PhysRevLett.118.103601.
[43] [43] Li P B, Gao S Y, Li F L. Robust continuous-variable entanglement of microwave photons with cavity electromechanics[J]. Phys Rev A, 2013, 88(4): 043802. DOI: 10.1103/PhysRevA.88.043802.
[44] [44] Sete E A, Eleuch H. Strong squeezing and robust entanglement in cavity electromechanics[J]. Phys Rev A, 2013, 89(1): 013841. DOI: 10.1103/PhysRevA.89.013841.
[45] [45] Pielawa S, Morigi G, Vitali D, et al. Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir[J]. Phys Rev Lett, 2007, 98: 240401. DOI: 10.1103/PhysRevLett.98.240401.
[46] [46] Skolnik M I. Radar Handbook[M]. 3rd ed. New York: The McGraw·Hill Companies, 2008. ISBN:9780071485470.
[47] [47] Bergou J, Herzog U, Hillery M. Quantum state estimation[M]. Berlin: Springer, 2004. DOI: 10.1007/978-3-540-44481-7[EQUATION]11.
[49] [49] Helstrom C W. Detection theory and quantum mechanics [J]. Inf Control, 1967, 10(3): 254-291. DOI: 10.1016/S0019-9958(67)90302-6.
[50] [50] Helstrom C W. Quantum detection and estimation theory [J]. J Stat Phys, 1969, 1(2): 231-251. DOI: 10.1007/BF01007479.
[51] [51] Romero G, Garcfa-Ripoll J J, Solano E. Microwave photon detector in circuit QED[J]. Phys Rev Lett, 2009, 102(17): 173602. DOI: 10.1103/PhysRevLett.102.173602.
[52] [52] Peropadre B, Romero G, Johansson G, et al. Approaching perfect microwave photodetection in circuit QED[J]. Phys Rev A, 2011, 84(6): 063834. DOI: 10.1103/PhysRevA.84.063834.
[53] [53] Barzanjeh S, Guha S, Weedbrook C, et al. Microwave quantum illumination[J]. Phys Rev Lett, 2015, 114: 080503. DOI: 10.1103/PhysRevLett.114.080503.
[54] [54] Johnson B R. Controlling photons in superconducting electrical Circuits[D]. Connecticut: Yale University, 2011.
[55] [55] Johnson B R, Reed M D, Houck A A, et al. Quantum non-demolition detection of single microwave photons in a circuit[J]. Nat Phys, 2010, 6(9): 663. DOI: 10.1038/nphys1710.
[56] [56] Sun L, Petrenko A, Leghtas Z, et al. Tracking photon jumps with repeated quantum non-demolition parity measurements[J]. Nature, 2014, 511:444. DOI: 10.1038/nature13436.
[57] [57] Flurin E, Roch N, Pillet J D, et al. Superconducting quantum node for entanglement and storage of microwave radiation[J]. Phys Rev Lett, 2015, 114: 90503. DOI: 10.1103/physrevlett.114.090503.
[58] [58] Koshino K. Theory of microwave single-photon detection using an impedance-matched system[J]. Phys Rev A, 2015, 91(4): 043805. DOI: 10.1103/physreva.91.043805.
[59] [59] Narla A, Shankar S, Hatridge M, et al. Robust concurrent remote entanglement between two superconducting qubits[J]. Phys Rev X, 2016, 6(3): 031036. DOI: 10.1103/PhysRevX.6.031036.
[60] [60] Kono S, Koshino K, Tabuchi Y, et al. Quantum non-demolition detection of an itinerant microwave photon[J]. Nat Phys, 2017, 14(6): 546--549. DOI: 10.1038/s41567-018-0066-3.
[61] [61] Besse J C, Gasparinetti S, Collodo M C, et al. Single-shot quantum nondemolition detection of individual itinerant microwave photons[J]. Phys Rev X, 2018, 8(2): 021003. DOI: 10.1103/PhysRevX.8.021003.
[62] [62] Zhang J Y, Gong C, Li S B, et al. Quantumized microwave detection based on [EQUATION]-Type three-level superconducting system: HMM modeling and performance prediction[J]. arXiv preprint, 2020. arXiv:2006.14497.
[63] [63] Grimsmo A L, Royer B, Kreikebaum J M, et al. Quantum metamaterial for broadband detection of single microwave photons[J]. Phys Rev Appl, 2021, 15(3): 034074. DOI: 10.1103/PhysRevApplied.15.034074.
[65] [65] Cavalcanti D, Brandao F G S L, Cunha M O T. Erratum: Are all maximally entangled states pure? [J]. Phys Rev A, 2005, 72: 040303. DOI: 10.1103/PhysRevA.72.040303.
[66] [66] Peres A. Separability criterion for density matrices[J]. Phys Rev Lett, 1996, 77(8):1413-1415. DOI: 10.1103/PhysRevLett.77.1413.
[67] [67] Wang Z W, Li J, Huang Y F, et al. Linear optical implemention of a quantum network for quantum estimation[J]. Phys Lett A, 2008, 372(2): 106-109. DOI: 10.1016/j.physleta.2007.07.026.
[68] [68] Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation[J]. Phys Rev A, 1995, 52(5): 1-31. DOI: 10.1103/PhysRevA.52.3457.
Get Citation
Copy Citation Text
SU Li, ZHOU Zi-heng, XU Xin-yi, LI Shu-guang, YAN Ying. Review of Quantum Microwave and Its Receiving[J]. Journal of Quantum Optics, 2021, 27(3): 253
Category:
Received: Jan. 11, 2021
Accepted: --
Published Online: Nov. 18, 2021
The Author Email: SU Li (1024723814@qq.com)