Acta Optica Sinica, Volume. 44, Issue 10, 1026009(2024)
Spatial Control of Photonic Quantum States (Invited)
[1] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 560, 7-11(2014).
[2] Mattle K, Weinfurter H, Kwiat P G et al. Dense coding in experimental quantum communication[J]. Physical Review Letters, 76, 4656-4659(1996).
[3] Pan J W, Bouwmeester D, Weinfurter H et al. Experimental entanglement swapping: entangling photons that never interacted[J]. Physical Review Letters, 80, 3891-3894(1998).
[4] Pan J W, Daniell M, Gasparoni S et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation[J]. Physical Review Letters, 86, 4435-4438(2001).
[5] Zhao Z, Chen Y A, Zhang A N et al. Experimental demonstration of five-photon entanglement and open-destination teleportation[J]. Nature, 430, 54-58(2004).
[6] Lu C Y, Zhou X Q, Gühne O et al. Experimental entanglement of six photons in graph states[J]. Nature Physics, 3, 91-95(2007).
[7] Huang Y F, Liu B H, Peng L et al. Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state[J]. Nature Communications, 2, 546(2011).
[8] Yao X C, Wang T X, Xu P et al. Observation of eight-photon entanglement[J]. Nature Photonics, 6, 225-228(2012).
[9] Wang X L, Chen L K, Li W et al. Experimental ten-photon entanglement[J]. Physical Review Letters, 117, 210502(2016).
[10] Chen L K, Li Z D, Yao X C et al. Observation of ten-photon entanglement using thin BiB3O6 crystals[J]. Optica, 4, 77-83(2017).
[11] Zhong H S, Li Y, Li W et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion[J]. Physical Review Letters, 121, 250505(2018).
[12] Hu X M, Chen J S, Liu B H et al. Experimental test of compatibility-loophole-free contextuality with spatially separated entangled qutrits[J]. Physical Review Letters, 117, 170403(2016).
[13] Wang J W, Paesani S, Ding Y H et al. Multidimensional quantum entanglement with large-scale integrated optics[J]. Science, 360, 285-291(2018).
[14] Li L, Liu Z X, Ren X F et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 368, 1487-1490(2020).
[15] Tiranov A, Designolle S, Cruzeiro E Z et al. Quantification of multidimensional entanglement stored in a crystal[J]. Physical Review A, 96, 040303(2017).
[16] Martin A, Guerreiro T, Tiranov A et al. Quantifying photonic high-dimensional entanglement[J]. Physical Review Letters, 118, 110501(2017).
[17] Xie Z D, Zhong T, Shrestha S et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb[J]. Nature Photonics, 9, 536-542(2015).
[18] Reimer C, Kues M, Roztocki P et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs[J]. Science, 351, 1176-1180(2016).
[19] Kues M, Reimer C, Roztocki P et al. On-chip generation of high-dimensional entangled quantum states and their coherent control[J]. Nature, 546, 622-626(2017).
[20] Allen L, Beijersbergen M W, Spreeuw R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).
[21] Padgett M J. Orbital angular momentum 25 years on[J]. Optics Express, 25, 11265-11274(2017).
[22] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light, Science & Applications, 8, 90(2019).
[23] Erhard M, Fickler R, Krenn M et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light, Science & Applications, 7, 17146(2018).
[24] Erhard M, Krenn M, Zeilinger A. Advances in high-dimensional quantum entanglement[J]. Nature Reviews Physics, 2, 365-381(2020).
[25] Fickler R, Lapkiewicz R, Plick W N et al. Quantum entanglement of high angular momenta[J]. Science, 338, 640-643(2012).
[26] Krenn M, Huber M, Fickler R et al. Generation and confirmation of a (100×100)-dimensional entangled quantum system[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 6243-6247(2014).
[27] Fickler R, Campbell G, Buchler B et al. Quantum entanglement of angular momentum states with quantum numbers up to 10, 010[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 13642-13647(2016).
[28] Hu X M, Xing W B, Liu B H et al. Efficient generation of high-dimensional entanglement through multipath down-conversion[J]. Physical Review Letters, 125, 090503(2020).
[29] Schuck C, Huber G, Kurtsiefer C et al. Complete deterministic linear optics Bell state analysis[J]. Physical Review Letters, 96, 190501(2006).
[30] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding[J]. Nature Physics, 4, 282-286(2008).
[31] Wang X L, Cai X D, Su Z E et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 518, 516-519(2015).
[32] Wang X L, Luo Y H, Huang H L et al. 18-qubit entanglement with six photons’ three degrees of freedom[J]. Physical Review Letters, 120, 260502(2018).
[33] Malik M, Erhard M, Huber M et al. Multi-photon entanglement in high dimensions[J]. Nature Photonics, 10, 248-252(2016).
[34] Erhard M, Malik M, Krenn M et al. Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits[J]. Nature Photonics, 12, 759-764(2018).
[35] Żdotukowski M, Zeilinger A, Horne M A. Realizable higher-dimensional two-particle entanglements via multiport beam splitters[J]. Physical Review A, 55, 2564-2579(1997).
[36] Kotlyar V V, Almazov A A, Khonina S N et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate[J]. Journal of the Optical Society of America A, 22, 849-861(2005).
[37] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 96, 163905(2006).
[38] Nagali E, Sciarrino F, de Martini F et al. Quantum information transfer from spin to orbital angular momentum of photons[J]. Physical Review Letters, 103, 013601(2009).
[39] D’Ambrosio V, Nagali E, Monken C H et al. Deterministic qubit transfer between orbital and spin angular momentum of single photons[J]. Optics Letters, 37, 172-174(2012).
[40] Li S M, Qian S X, Kong L J et al. An efficient and robust scheme for controlling the states of polarization in a Sagnac interferometric configuration[J]. EPL, 105, 64006(2014).
[41] Curtis J E, Grier D G. Structure of optical vortices[J]. Physical Review Letters, 90, 133901(2003).
[42] D’Ambrosio V, Spagnolo N, Del Re L et al. Photonic polarization gears for ultra-sensitive angular measurements[J]. Nature Communications, 4, 2432(2013).
[43] Llewellyn D, Ding Y H, Faruque I I et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon[J]. Nature Physics, 16, 148-153(2020).
[44] Wang X L, Ding J P, Ni W J et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 32, 3549-3551(2007).
[45] Maurer C, Jesacher A, Fürhapter S et al. Tailoring of arbitrary optical vector beams[J]. New Journal of Physics, 9, 78(2007).
[46] Jones P H, Rashid M, Makita M et al. Sagnac interferometer method for synthesis of fractional polarization vortices[J]. Optics Letters, 34, 2560-2562(2009).
[47] Liu S, Qi S X, Zhang Y et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Research, 6, 228-233(2018).
[48] Gao Y, Chen Z Z, Ding J P et al. Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams[J]. Applied Optics, 58, 6591-6596(2019).
[49] Kotlyar V V, Soifer V A, Khonina S N. An algorithm for the generation of laser beams with longitudinal periodicity: rotating images[J]. Journal of Modern Optics, 44, 1409-1416(1997).
[50] Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).
[51] Leach J, Padgett M J, Barnett S M et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 88, 257901(2002).
[52] Wei S B, Earl S K, Lin J et al. Active sorting of orbital angular momentum states of light with a cascaded tunable resonator[J]. Light, Science & Applications, 9, 10(2020).
[53] Berkhout G C G, Lavery M P J, Courtial J et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010).
[54] O’Sullivan M N, Mirhosseini M, Malik M et al. Near-perfect sorting of orbital angular momentum and angular position states of light[J]. Optics Express, 20, 24444-24449(2012).
[55] Mirhosseini M, Malik M, Shi Z M et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 4, 2781(2013).
[56] Wen Y H, Chremmos I, Chen Y J et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical Review Letters, 120, 193904(2018).
[57] Fontaine N K, Ryf R, Chen H S et al. Laguerre-Gaussian mode sorter[J]. Nature Communications, 10, 1865(2019).
[58] Guo Y H, Zhang S C, Pu M B et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light, Science & Applications, 10, 63(2021).
[59] Ruffato G. OAM-inspired new optics: the angular metalens[J]. Light, Science & Applications, 10, 96(2021).
[60] Fickler R, Ginoya M, Boyd R W. Custom-tailored spatial mode sorting by controlled random scattering[J]. Physical Review B, 95, 161108(2017).
[61] Zhang Z Y, Yin X L, Xin X J. Orbital angular momentum mode sorting by wavefront shaping with customizable optical phase conjugation through a diffuser[J]. Optics Communications, 531, 129230(2023).
[62] Zhou H L, Fu D Z, Dong J J et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect[J]. Light, Science & Applications, 6, e16251(2017).
[63] D’Errico A, D’Amelio R, Piccirillo B et al. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams[J]. Optica, 4, 1350-1357(2017).
[64] Wang Z K, Dedo M I, Guo K et al. Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network[J]. IEEE Photonics Journal, 11, 7903614(2019).
[65] Liu Z B, Zou J H, Lai Z Y et al. Sorting OAM modes with metasurfaces based on raytracing improved optical coordinate transformation[J]. Optics Express, 29, 34900-34912(2021).
[66] Nagali E, Sansoni L, Sciarrino F et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence[J]. Nature Photonics, 3, 720-723(2009).
[67] Slussarenko S, D’Ambrosio V, Piccirillo B et al. The polarizing Sagnac interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing[J]. Optics Express, 18, 27205-27216(2010).
[68] Zhang W H, Qi Q Q, Zhou J et al. Mimicking Faraday rotation to sort the orbital angular momentum of light[J]. Physical Review Letters, 112, 153601(2014).
[69] Lavery M P J, Robertson D J, Berkhout G C G et al. Refractive elements for the measurement of the orbital angular momentum of a single photon[J]. Optics Express, 20, 2110-2115(2012).
[70] Su T H, Scott R P, Djordjevic S S et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices[J]. Optics Express, 20, 9396-9402(2012).
[71] Wang B M, Wen Y H, Zhu J B et al. Sorting full angular momentum states with Pancharatnam-Berry metasurfaces based on spiral transformation[J]. Optics Express, 28, 16342-16351(2020).
[72] Cao H, Liang Y Z, Wang L L et al. Efficient dense orbital angular momentum demultiplexing enabled by quasi-wavelet conformal mapping[J]. Laser & Photonics Reviews, 17, 2200631(2023).
[73] Ruffato G, Girardi M, Massari M et al. A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams[J]. Scientific Reports, 8, 10248(2018).
[74] Wen Y H, Chremmos I, Chen Y J et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems[J]. Optica, 7, 254-262(2020).
[75] Feynman R P. Space-time approach to non-relativistic quantum mechanics[J]. Reviews of Modern Physics, 20, 367-387(1948).
[76] Feynman R P, Hibbs A R, Styer D F[M]. Quantum mechanics and path integrals(2010).
[77] Lundeen J S, Bamber C. Procedure for direct measurement of general quantum states using weak measurement[J]. Physical Review Letters, 108, 070402(2012).
[78] Malik M, Mirhosseini M, Lavery M P J et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector[J]. Nature Communications, 5, 3115(2014).
[79] Shi Z M, Mirhosseini M, Margiewicz J et al. Scan-free direct measurement of an extremely high-dimensional photonic state[J]. Optica, 2, 388-392(2015).
[80] Bolduc E, Gariepy G, Leach J. Direct measurement of large-scale quantum states via expectation values of non-Hermitian matrices[J]. Nature Communications, 7, 10439(2016).
[81] Vallone G, Dequal D. Strong measurements give a better direct measurement of the quantum wave function[J]. Physical Review Letters, 116, 040502(2016).
[82] Zhang S C, Zhou Y R, Mei Y F et al. δ-quench measurement of a pure quantum-state wave function[J]. Physical Review Letters, 123, 190402(2019).
[83] Ritchie N W M, Story J G, Hulet R G. Realization of a measurement of a“weak value”[J]. Physical Review Letters, 66, 1107-1110(1991).
[84] Dressel J, Malik M, Miatto F M et al. Colloquium: understanding quantum weak values: basics and applications[J]. Reviews of Modern Physics, 86, 307-316(2014).
[85] Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements[J]. Science, 319, 787-790(2008).
[86] Dixon P B, Starling D J, Jordan A N et al. Ultrasensitive beam deflection measurement via interferometric weak value amplification[J]. Physical Review Letters, 102, 173601(2009).
[87] Hallaji M, Feizpour A, Dmochowski G et al. Weak-value amplification of the nonlinear effect of a single photon[J]. Nature Physics, 13, 540-544(2017).
[88] Weber S J, Chantasri A, Dressel J et al. Mapping the optimal route between two quantum states[J]. Nature, 511, 570-573(2014).
[89] Murch K W, Weber S J, Macklin C et al. Observing single quantum trajectories of a superconducting quantum bit[J]. Nature, 502, 211-214(2013).
[90] Kocsis S, Braverman B, Ravets S et al. Observing the average trajectories of single photons in a two-slit interferometer[J]. Science, 332, 1170-1173(2011).
[91] Pan Y M, Zhang J, Cohen E et al. Weak-to-strong transition of quantum measurement in a trapped-ion system[J]. Nature Physics, 16, 1206-1210(2020).
[92] Wen Y L, Wang Y F, Tian L M et al. Demonstration of the quantum principle of least action with single photons[J]. Nature Photonics, 17, 717-722(2023).
[93] Kitagawa T, Rudner M S, Berg E et al. Exploring topological phases with quantum walks[J]. Physical Review A, 82, 033429(2010).
[94] Bian Z H, Li J, Qin H et al. Realization of single-qubit positive-operator-valued measurement via a one-dimensional photonic quantum walk[J]. Physical Review Letters, 114, 203602(2015).
[95] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 82, 3045-3067(2010).
[96] Kitagawa T, Broome M A, Fedrizzi A et al. Observation of topologically protected bound states in photonic quantum walks[J]. Nature Communications, 3, 882(2012).
[97] Zhan X, Xiao L, Bian Z H et al. Detecting topological invariants in nonunitary discrete-time quantum walks[J]. Physical Review Letters, 119, 130501(2017).
[98] Xiao L, Zhan X, Bian Z H et al. Observation of topological edge states in parity-time-symmetric quantum walks[J]. Nature Physics, 13, 1117-1123(2017).
[99] Wang K K, Qiu X Z, Xiao L et al. Simulating dynamic quantum phase transitions in photonic quantum walks[J]. Physical Review Letters, 122, 020501(2019).
[100] Wang X W, Zhan X, Li Y L et al. Generalized quantum measurements on a higher-dimensional system via quantum walks[J]. Physical Review Letters, 131, 150803(2023).
[101] Longhi S. Self-healing of non-hermitian topological skin modes[J]. Physical Review Letters, 128, 157601(2022).
[102] Goyal S K, Roux F S, Forbes A et al. Implementing quantum walks using orbital angular momentum of classical light[J]. Physical Review Letters, 110, 263602(2013).
[103] Cardano F, Massa F, Qassim H et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons[J]. Science Advances, 1, e1500087(2015).
[104] Cardano F, Maffei M, Massa F et al. Statistical moments of quantum-walk dynamics reveal topological quantum transitions[J]. Nature Communications, 7, 11439(2016).
[105] Wang B, Chen T, Zhang X D. Experimental observation of topologically protected bound states with vanishing Chern numbers in a two-dimensional quantum walk[J]. Physical Review Letters, 121, 100501(2018).
[106] Yin J, Cao Y, Li Y H et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 356, 1140-1144(2017).
[107] Liao S K, Cai W Q, Liu W Y et al. Satellite-to-ground quantum key distribution[J]. Nature, 549, 43-47(2017).
[108] Ren J G, Xu P, Yong H L et al. Ground-to-satellite quantum teleportation[J]. Nature, 549, 70-73(2017).
[109] Wootters W K. Entanglement of formation of an arbitrary state of two qubits[J]. Physical Review Letters, 80, 2245-2248(1998).
[110] Spekkens R W, Rudolph T. Degrees of concealment and bindingness in quantum bit commitment protocols[J]. Physical Review A, 65, 012310(2001).
[111] Bruss D, Macchiavello C. Optimal eavesdropping in cryptography with three-dimensional quantum states[J]. Physical Review Letters, 88, 127901(2002).
[112] Ralph T C, Resch K J, Gilchrist A. Efficient Toffoli gates using qudits[J]. Physical Review A, 75, 022313(2007).
[113] Lanyon B P, Barbieri M, Almeida M P et al. Simplifying quantum logic using higher-dimensional Hilbert spaces[J]. Nature Physics, 5, 134-140(2009).
[114] Kaszlikowski D, Gnacinski P, Zukowski M et al. Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits[J]. Physical Review Letters, 85, 4418-4421(2000).
[115] Chen Y, Ni R, Wu Y D et al. Phase-matching controlled orbital angular momentum conversion in periodically poled crystals[J]. Physical Review Letters, 125, 143901(2020).
[116] Liu Z F, Ren Z C, Lou Y C et al. Control of harmonic orbital angular momentum in second-harmonic generation of perfect vortices[J]. Physical Review A, 105, 063518(2022).
[117] di Lorenzo Pires H, Florijn H C B, van Exter M P. Measurement of the spiral spectrum of entangled two-photon states[J]. Physical Review Letters, 104, 020505(2010).
[118] Dada A C, Leach J, Buller G S et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities[J]. Nature Physics, 7, 677-680(2011).
[119] Torres J P, Alexandrescu A, Torner L. Quantum spiral bandwidth of entangled two-photon states[J]. Physical Review A, 68, 050301(2003).
[120] Liu S L, Zhou Z Y, Liu S K et al. Coherent manipulation of a three-dimensional maximally entangled state[J]. Physical Review A, 98, 062316(2018).
[121] Wang F R, Erhard M, Babazadeh A et al. Generation of the complete four-dimensional Bell basis[J]. Optica, 4, 1462-1467(2017).
[122] Kovlakov E V, Straupe S S, Kulik S P. Quantum state engineering with twisted photons via adaptive shaping of the pump beam[J]. Physical Review A, 98, 060301(2018).
[123] Liu S L, Zhang Y W, Yang C et al. Increasing two-photon entangled dimensions by shaping input-beam profiles[J]. Physical Review A, 101, 052324(2020).
[124] Kysela J, Erhard M, Hochrainer A et al. Path identity as a source of high-dimensional entanglement[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 26118-26122(2020).
[125] Potoček V, Miatto F M, Mirhosseini M et al. Quantum Hilbert hotel[J]. Physical Review Letters, 115, 160505(2015).
[126] Zhao Z, Ren Y X, Xie G D et al. Invited article: division and multiplication of the state order for data-carrying orbital angular momentum beams[J]. APL Photonics, 1, 090802(2016).
[127] Ruffato G, Massari M, Romanato F. Multiplication and division of the orbital angular momentum of light with diffractive transformation optics[J]. Light, Science & Applications, 8, 113(2019).
[128] Wen Y H, Chremmos I, Chen Y J et al. Arbitrary multiplication and division of the orbital angular momentum of light[J]. Physical Review Letters, 124, 213901(2020).
[129] Li S K, Feng X, Cui K Y et al. Programmable unitary operations for orbital angular momentum encoded states[J]. National Science Open, 1, 20220019(2022).
[130] Doda M, Huber M, Murta G et al. Quantum key distribution overcoming extreme noise: simultaneous subspace coding using high-dimensional entanglement[J]. Physical Review Applied, 15, 034003(2021).
[131] Jack B, Leach J, Ritsch H et al. Precise quantum tomography of photon pairs with entangled orbital angular momentum[J]. New Journal of Physics, 11, 103024(2009).
[132] Agnew M, Leach J, McLaren M et al. Tomography of the quantum state of photons entangled in high dimensions[J]. Physical Review A, 84, 062101(2011).
[133] Toninelli E, Ndagano B, Vallés A et al. Concepts in quantum state tomography and classical implementation with intense light: a tutorial[J]. Advances in Optics and Photonics, 11, 67-134(2019).
[134] Giovannini D, Romero J, Leach J et al. Characterization of high-dimensional entangled systems via mutually unbiased measurements[J]. Physical Review Letters, 110, 143601(2013).
[136] Bent N, Qassim H, Tahir A A et al. Experimental realization of quantum tomography of photonic qudits via symmetric informationally complete positive operator-valued measures[J]. Physical Review X, 5, 041006(2015).
[137] Bavaresco J, Valencia N H, Klöckl C et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement[J]. Nature Physics, 14, 1032-1037(2018).
[138] Kong L J, Liu R, Qi W R et al. Asymptotical locking tomography of high-dimensional entanglement[J]. Chinese Physics Letters, 37, 034204(2020).
[139] Sahoo S N, Chakraborti S, Pati A K et al. Quantum state interferography[J]. Physical Review Letters, 125, 123601(2020).
[140] Li Y, Huang S Y, Wang M et al. Two-measurement tomography of high-dimensional orbital angular momentum entanglement[J]. Physical Review Letters, 130, 050805(2023).
[141] McLaren M, Agnew M, Leach J et al. Entangled Bessel-Gaussian beams[J]. Optics Express, 20, 23589-23597(2012).
[142] McLaren M, Mhlanga T, Padgett M J et al. Self-healing of quantum entanglement after an obstruction[J]. Nature Communications, 5, 3248(2014).
[143] Zhang Y W, Prabhakar S, Rosales-Guzmán C et al. Hong-Ou-Mandel interference of entangled Hermite-Gauss modes[J]. Physical Review A, 94, 033855(2016).
[144] D’Ambrosio V, Nagali E, Walborn S P et al. Complete experimental toolbox for alignment-free quantum communication[J]. Nature Communications, 3, 961(2012).
[145] Liu J, Nape I, Wang Q et al. Multidimensional entanglement transport through single-mode fiber[J]. Science Advances, 6, eaay0837(2020).
[146] Gühne O, Kleinmann M, Cabello A et al. Compatibility and noncontextuality for sequential measurements[J]. Physical Review A, 81, 022121(2010).
[147] Szangolies J, Kleinmann M, Gühne O. Tests against noncontextual models with measurement disturbances[J]. Physical Review A, 87, 050101(2013).
[148] Cabello A, Cunha M T. Proposal of a two-qutrit contextuality test free of the finite precision and compatibility loopholes[J]. Physical Review Letters, 106, 190401(2011).
[149] Barreiro J T, Langford N K, Peters N A et al. Generation of hyperentangled photon pairs[J]. Physical Review Letters, 95, 260501(2005).
[150] Chen K, Li C M, Zhang Q et al. Experimental realization of one-way quantum computing with two-photon four-qubit cluster states[J]. Physical Review Letters, 99, 120503(2007).
[151] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 59, 2044-2046(1987).
[152] Mandel L. Quantum effects in one-photon and two-photon interference[J]. Reviews of Modern Physics Supplement, 71, S274-S282(1999).
[153] Bouchard F, Sit A, Zhang Y W et al. Two-photon interference: the Hong-Ou-Mandel effect[J]. Reports on Progress in Physics, 84, 012402(2021).
[154] He Y M, He Y, Wei Y J et al. On-demand semiconductor single-photon source with near-unity indistinguishability[J]. Nature Nanotechnology, 8, 213-217(2013).
[155] Ding X, He Y, Duan Z C et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar[J]. Physical Review Letters, 116, 020401(2016).
[156] Somaschi N, Giesz V, de Santis L et al. Near-optimal single-photon sources in the solid state[J]. Nature Photonics, 10, 340-345(2016).
[157] Wang H, He Y M, Chung T H et al. Towards optimal single-photon sources from polarized microcavities[J]. Nature Photonics, 13, 770-775(2019).
[158] Tomm N, Javadi A, Antoniadis N O et al. A bright and fast source of coherent single photons[J]. Nature Nanotechnology, 16, 399-403(2021).
[159] Chen M C, Li Y, Liu R Z et al. Directly measuring a multiparticle quantum wave function via quantum teleportation[J]. Physical Review Letters, 127, 030402(2021).
[160] Walther P, Pan J W, Aspelmeyer M et al. De Broglie wavelength of a non-local four-photon state[J]. Nature, 429, 158-161(2004).
[161] Nagata T, Okamoto R, O’Brien J L et al. Beating the standard quantum limit with four-entangled photons[J]. Science, 316, 726-729(2007).
[162] Pan J W, Chen Z B, Lu C Y et al. Multiphoton entanglement and interferometry[J]. Reviews of Modern Physics, 84, 777-838(2012).
[163] Zhang Y W, Agnew M, Roger T et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light[J]. Nature Communications, 8, 632(2017).
[164] Bouwmeester D, Pan J W, Mattle K et al. Experimental quantum teleportation[J]. Nature, 390, 575-579(1997).
[165] Pirandola S, Eisert J, Weedbrook C et al. Advances in quantum teleportation[J]. Nature Photonics, 9, 641-652(2015).
[166] Basset F B, Rota M B, Schimpf C et al. Entanglement swapping with photons generated on demand by a quantum dot[J]. Physical Review Letters, 123, 160501(2019).
[167] Zopf M, Keil R, Chen Y et al. Entanglement swapping with semiconductor-generated photons violates Bell’s inequality[J]. Physical Review Letters, 123, 160502(2019).
[168] Liu X, Hu J, Li Z F et al. Heralded entanglement distribution between two absorptive quantum memories[J]. Nature, 594, 41-45(2021).
[169] Hiekkamäki M, Fickler R. High-dimensional two-photon interference effects in spatial modes[J]. Physical Review Letters, 126, 123601(2021).
[170] Walborn S P, de Oliveira A N, Pádua S et al. Multimode Hong-Ou-mandel interference[J]. Physical Review Letters, 90, 143601(2003).
[171] Francesconi S, Baboux F, Raymond A et al. Engineering two-photon wavefunction and exchange statistics in a semiconductor chip[J]. Optica, 7, 316-322(2020).
[172] D’Ambrosio V, Carvacho G, Agresti I et al. Tunable two-photon quantum interference of structured light[J]. Physical Review Letters, 122, 013601(2019).
[173] Zhang Y W, Roux F S, Konrad T et al. Engineering two-photon high-dimensional states through quantum interference[J]. Science Advances, 2, e1501165(2016).
[174] Liu Z F, Chen C, Xu J M et al. Hong-Ou-Mandel interference between two hyperentangled photons enables observation of symmetric and antisymmetric particle exchange phases[J]. Physical Review Letters, 129, 263602(2022).
[175] Liu R C, Odom B, Yamamoto Y et al. Quantum interference in electron collision[J]. Nature, 391, 263-265(1998).
[176] Bocquillon E, Freulon V, Berroir J M et al. Coherence and indistinguishability of single electrons emitted by independent sources[J]. Science, 339, 1054-1057(2013).
[177] Gao X Q, Zhang Y W, D’Errico A et al. Manipulating the symmetry of transverse momentum entangled biphoton states[J]. Optics Express, 30, 21276-21281(2022).
[178] Reimer C, Sciara S, Roztocki P et al. High-dimensional one-way quantum processing implemented on d-level cluster states[J]. Nature Physics, 15, 148-153(2019).
[179] Kong L J, Liu R, Qi W R et al. Manipulation of eight-dimensional Bell-like states[J]. Science Advances, 5, eaat9206(2019).
[180] Yang T, Zhang Q, Zhang J et al. All-versus-nothing violation of local realism by two-photon, four-dimensional entanglement[J]. Physical Review Letters, 95, 240406(2005).
[181] Cinelli C, Barbieri M, Perris R et al. All-versus-nothing nonlocality test of quantum mechanics by two-photon hyperentanglement[J]. Physical Review Letters, 95, 240405(2005).
[182] Barbieri M, de Martini F, Mataloni P et al. Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement[J]. Physical Review Letters, 97, 140407(2006).
[183] Tschernig K, Müller C, Smoor M et al. Direct observation of the particle exchange phase of photons[J]. Nature Photonics, 15, 671-675(2021).
[184] Ecker S, Sohr P, Bulla L et al. Experimental single-copy entanglement distillation[J]. Physical Review Letters, 127, 040506(2021).
[185] Greenberger D M, Horne M A, Shimony A et al. Bell’s theorem without inequalities[J]. American Journal of Physics, 58, 1131-1143(1990).
[186] Pan J W, Bouwmeester D, Daniell M et al. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement[J]. Nature, 403, 515-519(2000).
[187] Kelly J, Barends R, Fowler A G et al. State preservation by repetitive error detection in a superconducting quantum circuit[J]. Nature, 519, 66-69(2015).
[188] Friis N, Vitagliano G, Malik M et al. Entanglement certification from theory to experiment[J]. Nature Reviews Physics, 1, 72-87(2019).
[189] Krenn M, Malik M, Fickler R et al. Automated search for new quantum experiments[J]. Physical Review Letters, 116, 090405(2016).
[190] Zhong H S, Wang H, Deng Y H et al. Quantum computational advantage using photons[J]. Science, 370, 1460-1463(2020).
[191] Zhong H S, Deng Y H, Qin J et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light[J]. Physical Review Letters, 127, 180502(2021).
[192] Deng Y H, Gu Y C, Liu H L et al. Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage[J]. Physical Review Letters, 131, 150601(2023).
[193] Thomas P, Ruscio L, Morin O et al. Efficient generation of entangled multiphoton graph states from a single atom[J]. Nature, 608, 677-681(2022).
[194] Wehner S, Elkouss D, Hanson R. Quantum internet: a vision for the road ahead[J]. Science, 362, eaam9288(2018).
[195] Furusawa A, Sørensen J L, Braunstein S L et al. Unconditional quantum teleportation[J]. Science, 282, 706-709(1998).
[196] Marcikic I, de Riedmatten H, Tittel W et al. Long-distance teleportation of qubits at telecommunication wavelengths[J]. Nature, 421, 509-513(2003).
[197] Zhang Q, Goebel A, Wagenknecht C et al. Experimental quantum teleportation of a two-qubit composite system[J]. Nature Physics, 2, 678-682(2006).
[198] Vitelli C, Spagnolo N, Aparo L et al. Joining the quantum state of two photons into one[J]. Nature Photonics, 7, 521-526(2013).
[199] Kimble H J. The quantum internet[J]. Nature, 453, 1023-1030(2008).
[200] Sansoni L, Sciarrino F, Vallone G et al. Polarization entangled state measurement on a chip[J]. Physical Review Letters, 105, 200503(2010).
[201] Munro W J, Stephens A M, Devitt S J et al. Quantum communication without the necessity of quantum memories[J]. Nature Photonics, 6, 777-781(2012).
[202] Neergaard-Nielsen J S. Two become one[J]. Nature Photonics, 7, 512-513(2013).
[203] Wei T C, Barreiro J T, Kwiat P G. Hyperentangled Bell-state analysis[J]. Physical Review A, 75, 060305(2007).
[204] Hu X M, Guo Y, Liu B H et al. Beating the channel capacity limit for superdense coding with entangled ququarts[J]. Science Advances, 4, eaat9304(2018).
[205] Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).
[206] Gregg P, Kristensen P, Ramachandran S. Conservation of orbital angular momentum in air-core optical fibers[J]. Optica, 2, 267-270(2015).
[207] Fang L, Wang H Y, Liang Y Z et al. Spin-orbit mapping of light[J]. Physical Review Letters, 127, 233901(2021).
[208] Qu R, Wang Y L, An M et al. Retrieving high-dimensional quantum steering from a noisy environment with N measurement settings[J]. Physical Review Letters, 128, 240402(2022).
[209] Babazadeh A, Erhard M, Wang F R et al. High-dimensional single-photon quantum gates: concepts and experiments[J]. Physical Review Letters, 119, 180510(2017).
[210] Wang Y C, Hu Z X, Sanders B C et al. Qudits and high-dimensional quantum computing[J]. Frontiers in Physics, 8, 479(2020).
[211] Politi A, Cryan M J, Rarity J G et al. Silica-on-silicon waveguide quantum circuits[J]. Science, 320, 646-649(2008).
[212] Metcalf B J, Thomas-Peter N, Spring J B et al. Multiphoton quantum interference in a multiport integrated photonic device[J]. Nature Communications, 4, 1356(2013).
[213] Metcalf B J, Spring J B, Humphreys P C et al. Quantum teleportation on a photonic chip[J]. Nature Photonics, 8, 770-774(2014).
[214] Vergyris P, Meany T, Lunghi T et al. On-chip generation of heralded photon-number states[J]. Scientific Reports, 6, 35975(2016).
[215] Barik S, Karasahin A, Flower C et al. A topological quantum optics interface[J]. Science, 359, 666-668(2018).
[216] Gefen T, Rotem A, Retzker A. Overcoming resolution limits with quantum sensing[J]. Nature Communications, 10, 4992(2019).
[217] Salvail J Z, Agnew M, Johnson A S et al. Full characterization of polarization states of light via direct measurement[J]. Nature Photonics, 7, 316-321(2013).
[218] Baranov D G, Krasnok A, Shegai T et al. Coherent perfect absorbers: linear control of light with light[J]. Nature Reviews Materials, 2, 17064(2017).
[219] Brida G, Genovese M, Ruo Berchera I. Experimental realization of sub-shot-noise quantum imaging[J]. Nature Photonics, 4, 227-230(2010).
[220] Ciattoni A, Crosignani B, di Porto P et al. Azimuthally polarized spatial dark solitons: exact solutions of Maxwell’s equations in a Kerr medium[J]. Physical Review Letters, 94, 073902(2005).
[221] Kawauchi H, Yonezawa K, Kozawa Y et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam[J]. Optics Letters, 32, 1839-1841(2007).
[222] Novotny L, Beversluis M R, Youngworth K S et al. Longitudinal field modes probed by single molecules[J]. Physical Review Letters, 86, 5251-5254(2001).
[223] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 1, 1-57(2009).
[224] Wang X L, Li Y N, Chen J et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 18, 10786-10795(2010).
[225] Li T Y, Li X Y, Yan S H et al. Generation and conversion dynamics of dual Bessel beams with a photonic spin-dependent dielectric metasurface[J]. Physical Review Applied, 15, 014059(2021).
[226] Shen Y J, Wang Z Y, Fu X et al. SU(2) Poincaré sphere: a generalized representation for multidimensional structured light[J]. Physical Review A, 102, 031501(2020).
[227] Pan Y, Li S M, Mao L et al. Vector optical fields with polarization distributions similar to electric and magnetic field lines[J]. Optics Express, 21, 16200-16209(2013).
[228] Wang C Y, Yu Y, Chen Y et al. Efficient quantum memory of orbital angular momentum qubits in cold atoms[J]. Quantum Science and Technology, 6, 045008(2021).
[229] Wang J W, Castellucci F, Franke-Arnold S. Vectorial light-matter interaction: exploring spatially structured complex light fields[J]. AVS Quantum Science, 2, 031702(2020).
[230] Zhang K, Liu S S, Chen Y X et al. Optical quantum states based on hot atomic ensembles and their applications[J]. Photonics Insights, 1, R06(2022).
Get Citation
Copy Citation Text
Zhifeng Liu, Shuangyin Huang, Chao Chen, Zhicheng Ren, Xilin Wang, Huitian Wang. Spatial Control of Photonic Quantum States (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026009
Category: Physical Optics
Received: Dec. 26, 2023
Accepted: Feb. 22, 2024
Published Online: May. 6, 2024
The Author Email: Xilin Wang (xilinwang@nju.edu.cn), Huitian Wang (htwang@nju.edu.cn)
CSTR:32393.14.AOS231992