Acta Optica Sinica, Volume. 35, Issue 10, 1028001(2015)

Design and Simulation of Laser Induced Bio-Aerosols Fluorescence Lidar

Rao Zhimin*, Hua Dengxin, He Tingyao, and Le Jing
Author Affiliations
  • [in Chinese]
  • show less
    References(27)

    [2] [2] Xu Ao, Xiong Chao, Zhang Pei, at al.. Research on dual-channel detection technology of bio-aerosols with intrinsic fluorescence measurement[J]. Acta Optica Sinica, 2013, 33(8): 0812005.

    [3] [3] Zhang Pei, Zhao Yongkai, Yang Wei, et al.. Development of a virtual impactor for submicron particles[J]. Chinese J Lasers, 2014, 41(1): 0116002.

    [4] [4] Després V R, Alex Huffman J, Burrows S M, et al.. Primary biological aerosol particles in the atmosphere: a review[J]. Tellus B, 2012, 64(1): 145-153.

    [5] [5] Feng Chunxia, Hung Lihua, Wang Jianbo, et al.. Theoretical studies on bioaerosol particle size and shape measurement from spatial scattering profiles[J]. Chin Opt Lett, 2011, 9(9): 092901.

    [6] [6] Pan Y L, Hill S C, Pinnick R G, et al.. Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results[J]. Opt Express, 2010, 18(12): 12436-12457.

    [7] [7] He Yan, Wu Dong. Performance evaluation of airborne ocean lidar for measuring chlorophyll-a, suspended matter and coastal water depth in the east china sea[J]. Periodical of Ocean University of China, 2004, 34(4): 649-654.

    [8] [8] Wan Wenbo, Hua Dengxin, Le Jing, et al.. Laser-induced chlorophyll fluorescence lifetime measurement and characteristic analysis[J]. Acta Physica Sinica, 2013, 62(19): 190601.

    [9] [9] Eversole J D, Scotto C S, Spence M, et al.. Continuous bioaerosol monitoring using UV excitation fluorescence[C]. SPIE, 2003, 4829: 532-533.

    [10] [10] Pan Y L, Huang H, Chang R K. Clustered and intergrated fluorescence spectra from single atmospheric aerosol particles excited by a 263- and 351-nm laser at New Haven, CT, and Adelphi, MD[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2012, 113(17): 2213-2221.

    [11] [11] Kaliszewski M, Trafny E A, Lewandowski R, et al.. A new approach to UVAPS data analysis towards detection of biological aerosol[J]. Journal of Aerosol Science, 2013, 58(4): 148-157.

    [12] [12] Fumikazu Taketani, Yugo Kanaya, Takayuki Nakamura, et al.. Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique[J]. Journal of aerosol Science, 2013, 58: 1-8.

    [13] [13] Hill S C, Pinnick R G, Niles S, et al.. Real-time measurement of fluorescence spectra from signal airborne biological particles[J]. Field Analytical Chemistry and Technology, 1999, 3(4-5): 221-239.

    [14] [14] Davitt K, Song Y K, Patterson W R, et al.. 290 and 340 nm UVLED arrays for fluorescence detection from single airborne particles[J]. Opt Express, 2005, 13(10): 3583-3593.

    [15] [15] Mcndonsa R A. Lidar protects against biological warfare agents[J]. Photonics Spectra, 1997, 31(2): 20-25.

    [16] [16] Butler J C, Christesen S D, DeSha M S, et al.. UV fluorescence lidar detection of bioaerosols[C]. SPIE, 1994, 2222: 228-237.

    [17] [17] Cai Shuyao, Zhang Pei, Zhu Linglin, et al.. Research on detection technology of bio-aerosols with tryptophan intrinsic fluorescence measurement[J]. Acta Optica Sinica, 2012, 32(5): 0512009.

    [19] [19] Zou Bingfang, Zhang Yinchao, Hu Shunxing. Study on the design of measuring organic aerosol fluorescence lidar[J]. Laser Technology, 2008, 32(3): 287-289.

    [20] [20] Yin Junyan, Yin Fuchang, Chen Ming, et al.. Impact on laser transmission in atmosphere[J]. Infrared and Laser Engineering, 2008, 37(suppl): 399-402.

    [21] [21] Sivaprakasam V, Huston A L, Scotto C, et al.. Multiple UV wavelength excitation and fluorescence of bioaerosols[J]. Opt Express 2004, 12(19): 4457-4466.

    [22] [22] Faris G, Copeland R A, Mortelmans K, et al.. Spectrally resolved absolute fluorescence cross sections for bacillus spores[J]. Appl Opt, 1997, 36(4): 958-967.

    [23] [23] Bhattar S L, Kolekar G B, Patil S R. Spectroscopic studies on the molecular interaction between salicylic acid and riboflavin (B2) in micellar solution[J]. Journal of Luminescence, 2010, 130(3): 355-359.

    [24] [24] Dai Yang, Cui Xuesen, Wu Yumei, et al.. Theoretical computation and experimental measurement on properties of scattering irradiance in daytime[J]. Laser Journal, 2008, 29(5): 39-41.

    [25] [25] Joshi D, Kumar D, Maini A K, et al.. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 112: 446-456.

    [26] [26] Zhou Qianting, Wei Jun, Xu Zhipeng. Influence of noise feature on multiple sampling, accumulation and averaging technology[J]. Infrared and Laser Engineering, 2010, 39(5): 959-962.

    [27] [27] Pan Y, Hill S C, Santarpia J L. Spectrally-resolved fluorescence cross sections of aerosolized biological live agents and stimulants using five excitation wavelengths in a BSL-3 laborator[J]. Opt Express, 2014, 22(7): 8165-8189.

    CLP Journals

    [1] WANG Qiang, HE Ting-yao, HUA Deng-xin. Performance Analysis of Fluorescence Lidar with Different Excited Wavelengths[J]. Acta Photonica Sinica, 2017, 46(12): 1201002

    Tools

    Get Citation

    Copy Citation Text

    Rao Zhimin, Hua Dengxin, He Tingyao, Le Jing. Design and Simulation of Laser Induced Bio-Aerosols Fluorescence Lidar[J]. Acta Optica Sinica, 2015, 35(10): 1028001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Apr. 20, 2015

    Accepted: --

    Published Online: Oct. 8, 2015

    The Author Email: Zhimin Rao (1805695165@qq.com)

    DOI:10.3788/aos201535.1028001

    Topics