Journal of Quantum Optics, Volume. 28, Issue 4, 360(2022)

Propagation Characteristics of Airy Pulses in the Dissipative System under the Influence of Higher-order Effects

SONG Li-jun*, LIU Shu-jie, and LIU Xiao-qi
Author Affiliations
  • [in Chinese]
  • show less
    References(39)

    [1] [1] ZHONG X Q, XU J M, WU B, CHENG K. Abnormal evolutionary dynamics of erupting solitons in dissipative systems[J]. Journal of the Optical Society of America B, 2020, 37(3):645-649. DOI: 10.1364/JOSAB.378534.

    [2] [2] ARANSON I, KRAMER L. The World of the Complex Ginzburg-Landau Equation[J]. Review of Modern Physics, 2001, 74(1):99-143. DOI: 10.1103/RevModPhys.74.99.

    [3] [3] CHENG Z, LI H, PU W. Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers[J]. Optics Express, 2015, 23(5):5972. DOI: 10.1364/OE.23.005972.

    [4] [4] HAUS H A, FUJIMOTO J G, IPPEN E P. Structures for additive pulse mode locking[J]. Journal of the Optical Society of America B, 1991, 8(10):2068-2076. DOI: 10.1364/JOSAB.8.002068.

    [5] [5] MATSUMOTO M, IKEDA H. Stable soliton transmission in the system with nonlinear gain[J]. Journal of Lightwave Tech nology, 1995, 13(4):658-665. DOI: 10.1109/50.372478.

    [6] [6] SOTO-CRESPO J M, GRELU P, AKHMEDIEV N. Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the caseof normal dispersion[J]. Phys Review E, 1997, 55(4):4783-4796. DOI: 10.1103/physreve.55.4783.

    [7] [7] SOTO-CRESPO J M, AKHMEDIEV N, ANKIEWICZ A. Pulsating, Creeping, and Erupting Solitons in Dissipative Systems[J]. Physical Review Letters, 2000, 85(14):2937-2940. DOI: 10.1103/PhysRevLett.85.2937.

    [8] [8] AKHMEDIEV N, SOTO-CRESPO J M, TOWN G. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach[J]. Phys Rev E, 2001, 63(5):056602. DOI: 10.1103/PhysRevE.63.056602.

    [9] [9] SOTO-CRESPO J M, CIENTIFICAS C S D I, et al. Light bullets and dynamic pattern formation in nonlinear dissipative systems[J]. Optics Express, 2005, 13(23):9352-630. DOI: 10.1364/OPEX.13.009352.

    [10] [10] SOTO-CRESPO J M, GRELU P, AKHMEDIEV N. Optical bullets and "rockets" in nonlinear dissipative systems and their transformations and interactions[J]. Optics Express, 2006, 14(9):4013. DOI: 10.1364/oe.14.004013.

    [11] [11] PENG J S, ZHAN L, GU Z C, QIAN K, LUO S Y, SHEN Q S. Experimental observationof transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser[J]. Phys Rev A, 2012, 86(3):1-5. DOI: 10.1103/PhysRevA.86.033808.

    [12] [12] WANG S K, NING Q Y, et al. Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser[J]. Optics Express, 2013, 21(2):2402-2407. DOI: 10.1364/OE.21.002402.

    [13] [13] LECAPLAIN C, GRELU P, SOTO-CRESPO J M, AKHMEDIEV N. Dissipative Rogue Waves Generated by Chaotic Pulse Bunching in a Mode-Locked Laser[J]. Physical Review Letters, 2012, 20(23):233901. DOI: 10.1103/PhysRevLett.108.233901.

    [14] [14] CHANG W, SOTO-CRESPO J M, VOUZAS P, et al. Extreme soliton pulsations in dissipative systems[J]. Physical Review E, 2015, 92(2):022926. DOI: 10.1103/PhysRevE.92.022926.

    [15] [15] TIAN H P, LI Z H, TIAN J P, et al. Effect of nonlinear gradient terms on pulsating, erupting and creeping solitons[J]. Applied Physics B, 2004, 78(2):199-204. DOI: 10.1007/s00340-003-1361-x.

    [16] [16] SONG L J, LI L, LI Z, et al. Effect of third-order dispersion on pulsating, erupting and creeping solitons[J]. Optics Communications, 2005, 249(1-3):301-309. DOI: 10.1016/j.optcom.2005.01.015.

    [17] [17] LATAS S C V, FERREIRA M F S. Soliton explosion control by higher-order effects[J]. Optics Letters, 2010, 35(11):1771-1773. DOI: 10.1364/OL.35.001771.

    [18] [18] FACO M, CARVALHO M I, LATAS S C, et al. Control of complex Ginzburg-Landau equation eruptions using intrapulse Raman scattering and corresponding traveling solutions[J]. Physics Letters A, 2010, 374(48):4844-4847. DOI: 10.1016/j.physleta.2010.10.006.

    [19] [19] LATAS S C V, FERREIRA M F S. Why can soliton explosions be controlled by higher-order effects?[J]. Optics Letters, 2011, 36(16):3085-3087. DOI: 10.1364/OL.36.003085.

    [20] [20] LATAS S C V, FERREIRA M F S, FACAO M V. Impact of higher-order effects on pulsating, erupting and creeping solitons[J]. Applied Physics B, 2011, 104(1):131-137. DOI: 10.1007/s00340-011-4474-7.

    [21] [21] FACO M, CARVALHO M I. Stability of traveling pulses of cubic-quintic complex Ginzburg-Landau equation including intrapulse Raman scattering[J]. Physics Letters A, 2011, 375(24):2327-2332. DOI: 10.1016/j.physleta.2011.04.051.

    [22] [22] CARVALHO M I, FACO M. Evolution of cubic-quintic complex Ginzburg-Landau erupting solitons under the effect of third-order dispersion and intrapulse Raman scattering[J]. Physics Letters A, 2012, 376(8-9):950-956. DOI: 10.1016/j.physleta.2012.01.036.

    [23] [23] GUREVICH S V, SCHELTE C, JAVALOYES J. Impact of high-order effects on soliton explosions in the complex cubic-quintic Ginzburg-Landau equation[J]. Physical Review A, 2019, 99(6):61803. DOI: 10.1103/PhysRevA.99.061803.

    [24] [24] NISHA, MAAN N, GOYAL A, et al. Chirped Lambert W-kink solitons of the complex cubic-quintic Ginzburg-Landau equation with intrapulse Raman scattering[J]. Physics Letters A, 2020, 384:126675. DOI: 10.1016/j.physleta.2020.126675.

    [25] [25] ZHU W, XIA Y, BAI Y. Traveling wave solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity[J]. Applied Mathematics and Computation, 2020, 382:125342. DOI: 10.1016/j.amc.2020.125342.

    [26] [26] QIU Y, MALOMED B A, MIHALACHE D, et al. Soliton dynamics in a fractional complex Ginzburg-Landau model[J]. Chaos, Solitons & Fractals, 2020, 131:109471. DOI: 10.1016/j.chaos.2019.109471.

    [27] [27] SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8):979-981. DOI: 10.1364/OL.32.000979.

    [28] [28] SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of Accelerating Airy Beams[J]. Physical Review Letters, 2007, 99(21):213901. DOI: 10.1103/PhysRevLett.99.213901.

    [29] [29] BROKY J, SIVILOGLOU G A, DOGARIU A, et al. Self-healing properties of optical Airy beams[J]. Optics Express, 2008, 16(17):12880. DOI: 10.1364/OE.16.012880.

    [30] [30] RUDNICK A, DAN M M. Airy-soliton interactions in Kerr media[J]. Optics Express, 2011, 19(25):25570-25582. DOI: 10.1364/OE.19.025570.

    [31] [31] SHU J, LEE J, FLEISCHER J W, et al. Diffusion-Trapped Airy Beams in Photorefractive Media[J]. Physical Review Letters, 2010, 104(25):253904. DOI: 10.1103/PhysRevLett.104.253904.

    [32] [32] JIANG Q, SU Y, MA Z, et al. Coherent interactions of multi-Airy-Gaussian beams in photorefractive media[J]. Journal of Optics, 2020, 49(2):224-229. DOI: 10.1007/s12596-020-00610-w.

    [33] [33] ZHAN K, YANG Z, LIU B, et al. Propagations of Airy Beams and Nonlinear Accelerating Optical Beams in Photorefractive Crystals with Asymmetric Nonlocality[J]. Annalen der Physik, 2018, 530:1800033. DOI: 10.1002/andp.201800033.

    [34] [34] YAN X, ZHANG X, LIU F, et al. Propagation Dynamics of Finite-Energy Airy Pulses in a Cubic-Quintic Competing Nonlinear Fiber[J]. IEEE Photonics Journal, 2017, 9(3):1-7. DOI: 10.1109/JPHOT.2017.2703822.

    [35] [35] LIU B, ZHAN K, YANG Z. Propagation dynamics of finite-energy Airy beams in competing nonlocal nonlinear media[J]. Journal of the Optical Society of America B, 2018, 35(11):2794. DOI: 10.1364/JOSAB.35.002794.

    [36] [36] ALFASSI B, ROTSCHILD C, MANELA O, et al. Boundary force effects exerted on solitons in highly nonlocal nonlinear media[J]. Optics Letters, 2007, 32(2):154. DOI: 10.1364/OL.32.000154.

    [37] [37] ZHONG X, DU X, CHENG K. Evolution of finite energy Airy pulses and soliton generation in optical fibers with cubic-quintic nonlinearity[J]. Optics Express, 2015, 23(23):29467. DOI: 10.1364/OE.23.029467.

    [38] [38] STANISLAV A, DEREVYANKO. Self-accelerating fronts in passively-mode-locked fiber lasers[J]. Physical Review A, 2017, 95(1):013802. DOI: 10.1103/PhysRevA.95.013802.

    [39] [39] ZHONG X, LIU D, CHENG K, et al. Abnormal single or composite dissipative solitons generation[J]. Optics Communications, 2016, 380:108-113. DOI: 10.1016/j.optcom.2016.05.082.

    Tools

    Get Citation

    Copy Citation Text

    SONG Li-jun, LIU Shu-jie, LIU Xiao-qi. Propagation Characteristics of Airy Pulses in the Dissipative System under the Influence of Higher-order Effects[J]. Journal of Quantum Optics, 2022, 28(4): 360

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 22, 2021

    Accepted: --

    Published Online: Mar. 5, 2023

    The Author Email: SONG Li-jun (songlij@sxu.edu.cn)

    DOI:10.3788/jqo20222804.0603

    Topics