Laser & Optoelectronics Progress, Volume. 59, Issue 13, 1307004(2022)

Recognition and Classification Method for Fiber Optical Vibration Signal Using AdaBoost Ensemble Learning

Hongquan Qu1、*, Xiang Ji1, Zhiyong Sheng1, Hongbin Qu2, and Ling Wang3
Author Affiliations
  • 1School of Information Science and Technology, North China University of Technology, Beijing 100144, China
  • 2International Business Department, China Petroleum Pipeline Bureau Engineering Co., Ltd, Langfang 065000, Hebei , China
  • 3Asia Pacific Branch of China Petroleum Pipeline Bureau Engineering Co., Ltd.Langfang 065000, Hebei , China
  • show less
    Figures & Tables(11)
    Original signals and reconstructed signals by LMD. (a1) Car cross original signal; (a2) car cross reconstructed signal;(b1) running original signal; (b2) running reconstructed signal; (c1) noise original signal; (c2) noise reconstructed signal; (d1) pickaxe original signal; (d2) pickaxe reconstructed signal; (e1) tapping original signal; (e2) tapping reconstructed signal
    Three-dimensional feature map of five different signals
    Flow chart of ensemble learning classification
    Implementation of AdaBoost
    Learning curves of decision tree and its AdaBoost classifier under different parameters. (a) Max_depth of decision tree; (b) number of base classifiers
    SVM learning curves. (a) Penalty coefficient C; (b) core parameter γ
    Precision, recall and F1-score for 10-fold cross-validation with different classifiers
    Experimental flowchart
    Confusion matrixes of test samples. (a) SVM; (b) DTC; (c) AdaBoost-DTC
    Fiber optical identification true positive rates based on three different classifiers
    • Table 1. Important parameters and optimal parameter values of different classifiers

      View table

      Table 1. Important parameters and optimal parameter values of different classifiers

      ClassifierDTCAdaBoost-DTCSVM
      Parameterfeature selection criteriafeature divide criteriamax-depthnumber of weak classifiersCγ
      Parameter rangegini/entropybest/random1-301-300.1-1000.1-1
      Best parameterentropybest1020800.63
    Tools

    Get Citation

    Copy Citation Text

    Hongquan Qu, Xiang Ji, Zhiyong Sheng, Hongbin Qu, Ling Wang. Recognition and Classification Method for Fiber Optical Vibration Signal Using AdaBoost Ensemble Learning[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1307004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fourier Optics and Signal Processing

    Received: Aug. 2, 2021

    Accepted: Sep. 10, 2021

    Published Online: Jun. 9, 2022

    The Author Email: Hongquan Qu (qhqphd@ncut.edu.cn)

    DOI:10.3788/LOP202259.1307004

    Topics