Journal of Inorganic Materials, Volume. 35, Issue 6, 623(2020)
[1] CELIK I, PHILLIPS A B, SONG Z N et al. Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration[J]. Energy & Environmental Science, 10, 1874-1884(2017).
[3] HEDLEY G J, RUSECKAS A, SAMUEL I D W. Light harvesting for organic photovoltaics[J]. Chemical Reviews, 117, 796-837(2016).
[8] YUAN Y L, WU Y H, ZHANG T et al. Integration of solar cells with hierarchical CoS
[9] SELVAM S, BALAMURALITHARAN B, KARTHICK S N et al. Novel high-temperature supercapacitor combined dye sensitized solar cell from a sulfated
[10] HASSANALIERAGH M, SOYATA T, NADEAU A et al. UR-SolarCap: an open source intelligent auto-wakeup solar energy harvesting system for supercapacitor-based energy buffering[J]. IEEE Access, 4, 542-557(2016).
[11] YANG Z B, DENG J, SUN H et al. Self-powered energy fiber: energy conversion in the sheath and storage in the core[J]. Advanced Materials, 26, 7038-7042(2014).
[12] MIYASAKA T, MURAKAMI T N. The photocapacitor: an efficient self-charging capacitor for direct storage of solar energy[J]. Applied Physics Letters, 85, 3932-3934(2004).
[14] GURUNG A, QIAO Q Q. Solar charging batteries: advances, challenges, and opportunities[J]. Joule, 2, 1217-1230(2018).
[17] LIU R Y, LIU Y Q, ZOU H Y et al. Integrated solar capacitors for energy conversion and storage[J]. Nano Research, 10, 1545-1559(2017).
[18] FU Y P, WU H W, YE S Y et al. Integrated power fiber for energy conversion and storage[J]. Energy & Environmental Science, 6, 805-812(2013).
[19] LIU H H, LI M P, KANER R B et al. Monolithically integrated self-charging power pack consisting of a silicon nanowire array/ conductive polymer hybrid solar cell and a laser-scribed graphene supercapacitor[J]. ACS Applied Materials & Interfaces, 10, 15609-15615(2018).
[20] CHAPIN D M, FULLER C S, PEARSON G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics, 25, 676-677(1954).
[21] ALI H, KOUL S, GREGORY G et al.
[22] CHAN C E, WENHAM S R, HALLAM B J et al. Monolithically integrated solar cell system[J]. U.S, 10/211, 354(2019).
[28] LIU X J, ZI W, LIU S Z. p-Layer bandgap engineering for high efficiency thin film silicon solar cells[J]. Materials Science in Semiconductor Processing, 39, 192-199(2015).
[29] LIU R Y, WANG J, SUN T et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%[J]. Nano Letters, 17, 4240-4247(2017).
[30] THEKKEKARA L V, JIA B H, ZHANG Y et al. On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film[J]. Applied Physics Letters, 107, 031105(2015).
[31] UM H D, CHOI K H, HWANG I et al. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries[J]. Energy & Environmental Science, 10, 931-940(2017).
[32] O'REGAN B, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 353, 737(1991).
[34] SU’AIT M S, RAHMAN M Y A, AHMAD A. Review on polymer electrolyte in dye-sensitized solar cells (DSSCs)[J]. Solar Energy, 115, 452-470(2015).
[35] MAHMOOD A. Recent research progress on quasi-solid-state electrolytes for dye-sensitized solar cells[J]. Journal of Energy Chemistry, 24, 686-692(2015).
[36] MENG X D, YIN M, SHU T et al. Research progress on counter electrodes of quantum dot-sensitized solar cells[J]. Journal of Inorganic Materials, 33, 483-493(2018).
[37] MURAKAMI T N, KAWASHIMA N, MIYASAKA T. A high- voltage dye-sensitized photocapacitor of a three-electrode system[J]. Chemical Communications, 3346-3348(2005).
[38] SAITO Y, OGAWA A, UCHIDA S et al. Energy-storable dye-sensitized solar cells with interdigitated nafion/polypyrrole-Pt comb-like electrodes[J]. Chemistry Letters, 39, 488-489(2010).
[40] ZHANG X, HUANG X Z, LI C S et al. Dye-sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode[J]. Advanced Materials, 25, 4093-4096(2013).
[42] SKUNIK-NUCKOWSKA M, GRZEJSZCZYK K, KULESZ P J et al. Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor[J]. Journal of Power Sources, 234, 91-99(2013).
[43] SCALIA A, BELLA F, LAMBERTI A et al. A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration[J]. Journal of Power Sources, 359, 311-321(2017).
[48] SHI C L, DONG H, ZHU R et al. An “all-in-one” mesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system[J]. Nano Energy, 13, 670-678(2015).
[49] GUO W X, XUE X Y, WANG S H et al. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays[J]. Nano Letters, 12, 2520-2523(2012).
[67] SHIN S S, SUK J H, KANG B J et al. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells[J]. Energy & Environmental Science, 12, 958-964(2019).
Get Citation
Copy Citation Text
Shouwu YU, Zewen ZHAO, Jinjin ZHAO, Shujuan XIAO, Yan SHI, Cunfa GAO, Xiao SU, Yuxiang HU, Zhisheng ZHAO, Jie WANG, Lianzhou WANG.
Category: REVIEW
Received: Jul. 10, 2019
Accepted: --
Published Online: Mar. 2, 2021
The Author Email: Lianzhou WANG (l.wang@uq.edu.au)