Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 5, 713(2021)

Segmentation and recognition of magnetic tile surface defects based on deep learning

XIE Jian1, YAO Jian-min1,2、*, YAN Qun1,2, and LIN Zhi-xian1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(13)

    [1] [1] LI X Q, JIANG H H, YIN G F. Detection of surface crack defects on ferrite magnetic tile[J]. NDT & E International, 2014, 62: 6-13.

    [5] [5] WANG T, CHEN Y, QIAO M N, et al. A fast and robust convolutional neural network-based defect detection model in product quality control[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9/12): 3465-3471.

    [6] [6] MEI S, YANG H, YIN Z P. An unsupervised-learning-based approach for automated defect inspection on textured surfaces[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1266-1277.

    [9] [9] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[J]. arXiv: 1505.04597, 2015.

    [10] [10] TABERNIK D, ELA S, SKVAR J, et al. Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 759-776.

    [11] [11] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. arXiv: 1502.03167, 2015.

    [12] [12] MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision (3DV). Stanford, CA, USA: IEEE, 2016: 565-571.

    [13] [13] ZENG G D, YANG X, LI J, et al. 3D U-net with multi-level deep supervision: fully automatic segmentation of proximal femur in 3D MR images[C]//8th International Workshop on Machine Learning in Medical Imaging. Quebec City, QC, Canada: Springer, 2017: 274-282.

    [14] [14] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556, 2014.

    [15] [15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[J]. arXiv: 1512.03385, 2015.

    [16] [16] CHOLLET F. Xception: deep learning with depthwise separable convolutions[J]. arXiv: 1610.02357, 2016.

    [17] [17] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[J]. arXiv: 1602.07261, 2016.

    [18] [18] HUANG Y B, QIU C Y, GUO Y, et al. Surface defect saliency of magnetic tile[C]//2018 IEEE 14th International Conference on Automation Science and Engineering (CASE). Munich, Germany: IEEE, 2018: 612-617.

    Tools

    Get Citation

    Copy Citation Text

    XIE Jian, YAO Jian-min, YAN Qun, LIN Zhi-xian. Segmentation and recognition of magnetic tile surface defects based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 713

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 24, 2020

    Accepted: --

    Published Online: Aug. 26, 2021

    The Author Email: YAO Jian-min (yaojm@fzu.edu.cn)

    DOI:10.37188/cjlcd.2020-0247

    Topics