Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1210003(2023)

Quantum Derived Image Transformation and Threshold Denoising Algorithm

Biao Wang, Shaojun Lin*, and Weiwei Zhao
Author Affiliations
  • School of Electronics and Control Engineering, Chang'an University, Xi'an 710054, Shaanxi, China
  • show less
    Figures & Tables(14)
    Schematic of image as discrete potential field
    Characteristic diagram of wave function. (a) Wave function of constant potential field; (b) wave function of inhomogeneous potential field
    Noisy image and corresponding wave function ψE20. (a) Original image; (b) Poisson noise with peak of 10;(c)delocalization;(d)-(f)corresponding wave functions ψE20
    Distribution diagram of projection coefficient
    Threshold function curve. (a) Traditional soft threshold function; (b) threshold scale factor
    Image denoising effect under different ℏ2/2m (top) and details (bottom)
    Image denoising effect under different σ2 (top) and details (bottom)
    Denoising effect under Gaussian noise with mean value of 0 and variance of 0.01. (a) Original image; (b) noisy image; (c) SCSA; (d) WHT; (e) WST; (f) TV1; (g) NLM; (h) proposed algorithm
    Denoising effect under Gaussian noise with mean value of 0 and variance of 0.005. (a) Original image; (b) noisy image; (c) SCSA; (d) WHT; (e) WST; (f) TV1; (g) NLM; (h) proposed algorithm
    Denoising effect under Poisson noise with peak value of 100. (a) Lena; (b) noisy image; (c) PURE-LET; (d) AWHT; (e) TV2; (f) FOTV; (g) ANLM; (h) proposed algorithm
    Denoising effect under Poisson noise with peak value of 10. (a) house; (b) noisy image; (c) PURE-LET; (d) AWHT; (e) TV2; (f) FOTV; (g) ANLM; (h) proposed algorithm
    • Table 1. Operation time of different algorithms

      View table

      Table 1. Operation time of different algorithms

      Noise typeNoise intensityWHTWSTSCSATV1NLMProposed algorithm
      Gaussian0.005 variance0.050.045.913.7533.020.27
      noise0.01 variance0.070.096.054.2334.100.54
      Poissonppeak=100.890.2813.8911.6435.750.58
      noiseppeak=1001.570.2111.229.2334.260.25
    • Table 2. Comparison of denoising effect (Gaussian noise)

      View table

      Table 2. Comparison of denoising effect (Gaussian noise)

      ImageAlgorithmGaussian noise(0.005 variance)Gaussian noise(0.01 variance)
      MSEPSNR /dBSSIMMSEPSNR /dBSSIM
      LenaNoisy image0.005023.030.460.010020.010.34
      WHT0.001728.640.740.002625.840.72
      WST0.001528.180.770.002526.010.71
      SCSA0.001926.820.730.003124.900.60
      TV10.001029.100.800.001627.550.75
      NLM0.001029.020.860.001428.250.81
      Proposed algorithm0.001628.070.760.002526.250.71
      cameramanNoisy image0.005023.340.440.010020.360.34
      WHT0.001528.110.740.002425.860.68
      WST0.001327. 960.750.002325.760.67
      SCSA0.001725.980.640.002824.180.57
      TV10.001428.520.800.001827.260.73
      NLM0.001627.990.830.002027.010.76
      Proposed algorithm0.001328.150.750.002426.150.69
    • Table 3. Comparison of denoising effect (Poisson noise)

      View table

      Table 3. Comparison of denoising effect (Poisson noise)

      ImageAlgorithmPoisson noise(ppeak=10)Poisson noise(ppeak=100)
      MSEPSNR /dBSSIMMSEPSNR /dBSSIM
      houseNoisy image0.041513.820.120.005018.130.39
      PURE-LET0.004523.670.500.001029.130.72
      AWHT0.003824.680.490.000929.430.73
      TV20.003324.760.580.001129.250.76
      FOTV0.002725.510.630.000730.120.81
      ANLM0.003424.470.640.000532.580.85
      Proposed algorithm0.002925.370.600.001030.050.79
      LenaNoisy image0.039813.990.170.004623.360.49
      PURE-LET0.004923.150.530.001927.730.78
      AWHT0.004523.790.530.001727.970.79
      TV20.003624.130.620.001429.270.80
      FOTV0.003324.650.680.001030.110.85
      ANLM0.003824.080.640.000930.190.87
      Proposed algorithm0.003424.920.650.001229.630.83
    Tools

    Get Citation

    Copy Citation Text

    Biao Wang, Shaojun Lin, Weiwei Zhao. Quantum Derived Image Transformation and Threshold Denoising Algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 21, 2022

    Accepted: Jun. 7, 2022

    Published Online: May. 23, 2023

    The Author Email: Shaojun Lin (3207954651@qq.com)

    DOI:10.3788/LOP221059

    Topics