Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1210003(2023)
Quantum Derived Image Transformation and Threshold Denoising Algorithm
Fig. 2. Characteristic diagram of wave function. (a) Wave function of constant potential field; (b) wave function of inhomogeneous potential field
Fig. 3. Noisy image and corresponding wave function
Fig. 5. Threshold function curve. (a) Traditional soft threshold function; (b) threshold scale factor
Fig. 8. Denoising effect under Gaussian noise with mean value of 0 and variance of 0.01. (a) Original image; (b) noisy image; (c) SCSA; (d) WHT; (e) WST; (f) TV1; (g) NLM; (h) proposed algorithm
Fig. 9. Denoising effect under Gaussian noise with mean value of 0 and variance of 0.005. (a) Original image; (b) noisy image; (c) SCSA; (d) WHT; (e) WST; (f) TV1; (g) NLM; (h) proposed algorithm
Fig. 10. Denoising effect under Poisson noise with peak value of 100. (a) Lena; (b) noisy image; (c) PURE-LET; (d) AWHT; (e) TV2; (f) FOTV; (g) ANLM; (h) proposed algorithm
Fig. 11. Denoising effect under Poisson noise with peak value of 10. (a) house; (b) noisy image; (c) PURE-LET; (d) AWHT; (e) TV2; (f) FOTV; (g) ANLM; (h) proposed algorithm
|
|
|
Get Citation
Copy Citation Text
Biao Wang, Shaojun Lin, Weiwei Zhao. Quantum Derived Image Transformation and Threshold Denoising Algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210003
Category: Image Processing
Received: Mar. 21, 2022
Accepted: Jun. 7, 2022
Published Online: May. 23, 2023
The Author Email: Shaojun Lin (3207954651@qq.com)