Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1478(2025)

Construction and Challenges of Testing and Evaluation Systems for Solid-State Batteries

WANG Fang1, HAN Ce2, WANG Weina2, LIU Shiqiang1, and LI Peng2
Author Affiliations
  • 1CATARC: China Automotive Technology and Research Center Co., Ltd., Tianjin, 300300, China
  • 2CATARC New Energy Vehicle Research and Inspection Center (Tianjin) Co., Ltd., Tianjin, 300300, China
  • show less
    References(80)

    [1] [1] RANDAU S, WEBER D A, KTZ O, et al. Benchmarking the performance of all-solid-state lithium batteries[J]. Nat Energy, 2020, 5: 259–270.

    [2] [2] WANG C H, LIANG J W, KIM J T, et al. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Sci Adv, 2022, 8(36): eadc9516.

    [3] [3] ALBERTUS P, ANANDAN V, BAN C M, et al. Challenges for and pathways toward Li-metal-based all-solid-state batteries[J]. ACS Energy Lett, 2021: 1399–1404.

    [8] [8] CHEN Y Q, KANG Y Q, ZHAO Y, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. J Energy Chem, 2021, 59: 83–99.

    [9] [9] XU C J, DAI Q, GAINES L, et al. Future material demand for automotive lithium-based batteries[J]. Commun Mater, 2020, 1: 99.

    [11] [11] TRIPATHI A M, SU W N, HWANG B J.In situanalytical techniques for battery interface analysis[J]. Chem Soc Rev, 2018, 47(3): 736–851.

    [12] [12] HAN W J, ZOU C F, ZHOU C, et al. Estimation of cell SOC evolution and system performance in module-based battery charge equalization systems[J]. IEEE Trans Smart Grid, 2019, 10(5): 4717–4728.

    [13] [13] CANNARELLA J, ARNOLD C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. J Power Sources, 2014, 245: 745–751.

    [14] [14] ZHANG C P, JIANG Y, JIANG J C, et al. Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries[J]. Appl Energy, 2017, 207: 510–519.

    [15] [15] ZHENG Y J, OUYANG M G, LU L G, et al. Understanding aging mechanisms in lithium-ion battery packs: From cell capacity loss to pack capacity evolution[J]. J Power Sources, 2015, 278: 287–295.

    [16] [16] MA T Y, MA X L, WANG F, et al. Investigating the cell result multiplication method for emission test of battery module[J]. Batteries, 2023, 9(9): 450.

    [17] [17] LIU S Q, MA T Y, WEI Z, et al. Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge[J]. J Energy Chem, 2021, 52: 20–27.

    [19] [19] YU C, GANAPATHY S, ECK E R H V, et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid- electrolyte-electrode interface[J]. Nat Commun, 2017, 8(1): 1086.

    [20] [20] ZHANG B K, TAN R, YANG L Y, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes[J]. Energy Storage Mater, 2018, 10: 139–159.

    [22] [22] LOU S F, ZHANG F, FU C K, et al. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond[J]. Adv Mater, 2021, 33(6): e2000721.

    [23] [23] WU Y J, WANG S, LI H, et al. Progress in thermal stability of all-solid-state-Li-ion-batteries[J]. InfoMat, 2021, 3(8): 827–853.

    [24] [24] YU X Q, CHEN R S, GAN L Y, et al. Battery safety: From lithium-ion to solid-state batteries[J]. Engineering, 2023, 21: 9–14.

    [25] [25] XU H, YANG S, LI B. Pressure Effects and Countermeasures in Solid‐State Batteries: A Comprehensive Review [J]. Adv Energy Mater, 2024, 14(16).

    [26] [26] ZHANG W B, SCHRDER D, ARLT T, et al. (Electro)chemical expansion during cycling: Monitoring the pressure changes in operating solid-state lithium batteries[J]. J Mater Chem A, 2017, 5(20): 9929–9936.

    [27] [27] KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid state batteries[J]. J Power Sources, 2015, 282: 299–322.

    [28] [28] LEWIS J A, TIPPENS J, CORTES F J Q, et al. Chemo–mechanical challenges in solid-state batteries[J]. Trends Chem, 2019, 1(9): 845–857.

    [29] [29] LUNTZ A C, VOSS J, REUTER K. Interfacial challenges in solid-state Li ion batteries[J]. J Phys Chem Lett, 2015, 6(22): 4599–4604.

    [30] [30] TIAN H K, QI Y. Simulation of the effect of contact area loss in all-solid-state Li-ion batteries[J]. J Electrochem Soc, 2017, 164(11): E3512–E3521.

    [31] [31] CHEN X Z, HE W J, DING L X, et al. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework[J]. Energy Environ Sci, 2019, 12(3): 938–944.

    [33] [33] SCHLAUTMANN E, WEI A, MAUS O, et al. Impact of the solid electrolyte particle size distribution in sulfide-based solid-state battery composites[J]. Adv Energy Mater, 2023, 13(41): 2302309.

    [37] [37] CAO D X, SUN X, LI Q, et al. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations[J]. Matter, 2020, 3(1): 57–94.

    [38] [38] WU B B, WANG S Y, LOCHALA J, et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries[J]. Energy Environ Sci, 2018, 11(7): 1803–1810.

    [39] [39] JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nat Energy, 2023, 8: 230–240.

    [40] [40] FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Appl Energy, 2019, 246: 53–64.

    [41] [41] LIU X, REN D S, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047–2064.

    [42] [42] WU Y J, XU J, LU P S, et al. Thermal stability of sulfide solid electrolyte with lithium metal[J]. Adv Energy Mater, 2023, 13(36): 2301336.

    [43] [43] RUI X Y, REN D S, LIU X, et al. Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries[J]. Energy Environ Sci, 2023, 16(8): 3552–3563.

    [44] [44] KIM T, KIM K, LEE S, et al. Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries[J]. Chem Mater, 2022, 34(20): 9159–9171.

    [45] [45] LV F, WANG Z Y, SHI L Y, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. J Power Sources, 2019, 441: 227175.

    [46] [46] SPENCER JOLLY D, NING Z Y, HARTLEY G O, et al. Temperature dependence of lithium anode voiding in argyrodite solid-state batteries[J]. ACS Appl Mater Interfaces, 2021, 13(19): 22708–22716.

    [47] [47] WANG J N, YANG K, SUN S Y, et al. Advances in thermal-related analysis techniques for solid-state lithium batteries[J]. InfoMat, 2023, 5(4): e12401.

    [48] [48] DOUX J M, YANG Y, TAN D H S, et al. Pressure effects on sulfide electrolytes for all solid-state batteries[J]. J Mater Chem A, 2020, 8(10): 5049–5055.

    [49] [49] YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries[J]. J Power Sources, 2020, 473: 228595.

    [50] [50] CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chem Rev, 2020, 120(14): 6820–6877.

    [51] [51] SO M, INOUE G, HIRATE R, et al. Effect of mold pressure on compaction and ion conductivity of all-solid-state batteries revealed by the discrete element method[J]. J Power Sources, 2021, 508: 230344.

    [53] [53] WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. J Power Sources, 2012, 208: 210–224.

    [54] [54] MA T Y, HAN L Q, WANG F, et al. Thermal safety analysis of lithium-ion traction batteries based on electrode thermal stability[M]//Proceedings of the UNIfied Conference of DAMAS, IncoME and TEPEN Conferences (UNIfied 2023). Cham: Springer Nature Switzerland, 2024: 129–141.

    [55] [55] MA B, LIN C, LIU L, et al. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592.

    [56] [56] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 16103.

    [57] [57] WANG C W, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries[J]. Chem Rev, 2020, 120(10): 4257–4300.

    [58] [58] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nat Mater, 2019, 18(12): 1278–1291.

    [59] [59] XU S J, SUN Z H, SUN C G, et al. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature[J]. Adv Funct Mater, 2020, 30(51): 2007172.

    [61] [61] NAGAO M, IMADE Y, NARISAWA H, et al. All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte[J]. J Power Sources, 2013, 222: 237–242.

    [62] [62] GAO Z H, SUN H B, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Adv Mater, 2018, 30(17): e1705702.

    [63] [63] MIAO X, GUAN S D, MA C, et al. Role of interfaces in solid-state batteries[J]. Adv Mater, 2023, 35(50): e2206402.

    [64] [64] MARCHIORI C F N, CARVALHO R P, EBADI M, et al. Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: The role of Li-ion salts[J]. Chem Mater, 2020, 32(17): 7237–7246.

    [65] [65] MRY A, ROUSSELOT S, LEPAGE D, et al. A critical review for an accurate electrochemical stability window measurement of solid polymer and composite electrolytes[J]. Materials, 2021, 14(14): 3840.

    [67] [67] KE X Y, WANG Y, REN G F, et al. Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries[J]. Energy Storage Mater, 2020, 26: 313–324.

    [68] [68] YU S, SCHMIDT R D, GARCIA-MENDEZ R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12(LLZO)[J]. Chem Mater, 2016, 28(1): 197–206.

    [69] [69] CHEN R J, QU W J, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons[J]. Mater Horiz, 2016, 3(6): 487–516.

    [70] [70] TIAN Y S, SHI T, RICHARDS W D, et al. Compatibility issues between electrodes and electrolytes in solid-state batteries[J]. Energy Environ Sci, 2017, 10(5): 1150–1166.

    [72] [72] AN S J, LI J L, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52–76.

    [73] [73] NIE M Y, LUCHT B L. Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries[J]. J Electrochem Soc, 2014, 161(6): A1001–A1006.

    [74] [74] PELED E, MENKIN S. Review: SEI: Past, present and future[J]. J Electrochem Soc, 2017, 164(7): A1703–A1719.

    [75] [75] XIAO Y H, MIARA L J, WANG Y, et al. Computational screening of cathode coatings for solid-state batteries[J]. Joule, 2019, 3(5): 1252–1275.

    [76] [76] CULVER S P, KOERVER R, ZEIER W G, et al. On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries[J]. Adv Energy Mater, 2019, 9(24): 1900626.

    [77] [77] KOERVER R, ZHANG W B, DE BIASI L, et al. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries[J]. Energy Environ Sci, 2018, 11(8): 2142–2158.

    [78] [78] LIU B Y, PU S D, DOERRER C, et al. The effect of volume change and stack pressure on solid-state battery cathodes[J]. SusMat, 2023, 3(5): 721–728.

    [79] [79] KIMURA Y, FAKKAO M, NAKAMURA T, et al. Influence of active material loading on electrochemical reactions in composite solid-state battery electrodes revealed byoperando3D CT-XANES imaging[J]. ACS Appl Energy Mater, 2020, 3(8): 7782–7793.

    [80] [80] SAKKA Y, YAMASHIGE H, WATANABE A, et al. Pressure dependence on the three-dimensional structure of a composite electrode in an all-solid-state battery[J]. J Mater Chem A, 2022, 10(31): 16602–16609.

    [81] [81] YADAV N G, FOLASTRE N, BOLMONT M, et al. Study of failure modes in two sulphide-based solid electrolyte all-solid-state batteriesvia in situSEM[J]. J Mater Chem A, 2022, 10(33): 17142–17155.

    [82] [82] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chem Mater, 2016, 28(1): 266–273.

    [83] [83] XIAO Y H, WANG Y, BO S H, et al. Understanding interface stability in solid-state batteries[J]. Nat Rev Mater, 2020, 5: 105–126.

    [84] [84] HORI S, KANNO R, SUN X Y, et al. Understanding the impedance spectra of all-solid-state lithium battery cells with sulfide superionic conductors[J]. J Power Sources, 2023, 556: 232450.

    [85] [85] LIU B Y, FU K, GONG Y H, et al. Rapid thermal annealing of cathode-garnet interface toward high-temperature solid state batteries[J]. Nano Lett, 2017, 17(8): 4917–4923.

    [86] [86] LI C, WANG Z Y, HE Z J, et al. An advance review of solid-state battery: Challenges, progress and prospects[J]. Sustain Mater Technol, 2021, 29: e00297.

    [87] [87] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1(4): 16030.

    [88] [88] TROY S, SCHREIBER A, REPPERT T, et al. Life cycle assessment and resource analysis of all-solid-state batteries[J]. Appl Energy, 2016, 169: 757–767.

    [89] [89] KARTINI E, GENARDY C T. The future of all solid state battery; proceedings of the IOP Conference Series: Materials Science and Engineering [C]// F, 2020. IOP Publishing.

    [90] [90] WANG Q C, DING X Y, LI J B, et al. Minimizing the interfacial resistance for a solid-state lithium battery running at room temperature[J]. Chem Eng J, 2022, 448: 137740.

    [91] [91] WAN Z P, LEI D N, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Adv Funct Mater, 2019, 29(1): 1805301.

    [92] [92] DARMET N, CHARBONNEL J, REYTIER M, et al. First experimental assessment of all-solid-state battery thermal runaway propagation in a battery pack[J]. ACS Appl Energy Mater, 2024, 7(10): 4365–4375.

    [93] [93] RANDREMA D X, MFIBAN I L, SOLER D M, et al. Towards a practical use of sulfide solid electrolytes in solid-state batteries: Impact of dry room exposure on H2S release and material properties[J]. Batter Supercaps, 2024, 7(1): e202300380.

    [94] [94] YERSAK T A, ZHANG Y B, HAO F, et al. Moisture stability of sulfide solid-state electrolytes[J]. Front Energy Res, 2022, 10: 882508.

    [95] [95] SCHARMANN T, ZCELIKMAN C, NGUYEN D M, et al. Quantification of hydrogen sulfide development during the production of all-solid-state batteries with argyrodite sulfide-based separators[J]. ACS Appl Energy Mater, 2024, 7(3): 1261–1269.

    Tools

    Get Citation

    Copy Citation Text

    WANG Fang, HAN Ce, WANG Weina, LIU Shiqiang, LI Peng. Construction and Challenges of Testing and Evaluation Systems for Solid-State Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1478

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 31, 2024

    Accepted: Jul. 11, 2025

    Published Online: Jul. 11, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240848

    Topics