Journal of Inorganic Materials, Volume. 36, Issue 1, 9(2021)

Porous Carbon Nanomaterials Based Tumor Targeting Drug Delivery System: a Review

Xiaokun CHENG1,2, Yue ZHANG1, Haijun Lü1, Xinying LIU2, Senlin HOU3, and Aibing CHEN1、*
Author Affiliations
  • 1College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
  • 2Institute for the Development of Energy for African Sustainability, University of South Africa, Private Bag X6, Johannesburg 1710, South Africa
  • 3The Second Hospital of Hebei Medical University, Bilio-Pancreatic Endoscopic Surgery Department, Shijiazhuang 050000, China
  • show less
    References(113)

    [1] BRAY F, FERLAY J, SOERJOMATARAM I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[D]. CA: A Cancer Journal for Clinicians, 68, 394-424(2018).

    [2] CHEN J G, CHEN H Z, ZHU J et al. Cancer survival in patients from a hospital-based cancer registry, China[D]. Journal of Cancer, 9, 851-860(2018).

    [3] FAN W, LU N, HUANG P et al. Glucose-responsive sequential generation of hydrogenperoxide and nitric oxide for synergistic cancer starving-like/gas therapy.[D]. Angewandte Chemie, International Edition in English, 56, 1229-1233(2017).

    [4] LINDNER O C, PHILLIPS B, MCCABE M G et al. A meta-analysis of cognitive impairment following adult cancer chemotherapy[D]. Neuropsychology, 28, 726-740(2014).

    [5] MILLER K D, NOGUEIRA L, MARIOTTO A B et al. Cancer treatment and survivorship statistics, 2019[D]. CA: A Cancer Journal for Clinicians, 69, 363-385(2019).

    [6] ZHAO X, TIAN K, ZHOU T et al. PEGylated multi-walled carbon nanotubes as versatile vector for tumor-specific intracellular triggered release with enhanced anti-cancer efficiency: Optimization of length and PEGylation degree[D]. Colloids and Surfaces B: Biointerfaces, 168, 43-49(2018).

    [7] ZHOU S, SHA H, LIU B et al. Integration of simultaneous and cascade release of two drugs into smart single nanovehicles based on DNA-gated mesoporous silica nanoparticles[D]. Chemical Science (Royal Society of Chemistry: 2010), 5, 4424-4433(2014).

    [8] GUO T, ZHU J, YANG Y et al. Progress in the construction and application of nano drug delivery systems based on Bletilla striata polysaccharides[D]. Chinese Journal of Pharmaceuticals, 50, 958-967(2019).

    [9] SHI J, WANG B, WANG L et al. Fullerene (C60)-based tumor-targeting nanoparticles with "off-on" state for enhanced treatment of cancer[D]. Journal of Controlled Release, 235, 245-258(2016).

    [10] MEHER J G, KESHARWANI P, CHAURASIA M et al[M]. Carbon nanotubes (CNTs): A novel drug delivery tool in brain tumor treatment., 375-396(2018).

    [11] XIANWU HUA, YAN-WEN BAO, WU F-G. Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus iImaging and enhanced cytosolic and nuclear drug delivery. ACS Appl. Mater[D]. Interfaces, 10, 10664-10677(2018).

    [12] CHEN Y, TAN C, ZHANG H et al. Two-dimensional graphene analogues for biomedical applications[D]. Chemical Society Reviews, 44, 2681-2701(2015).

    [13] WEI Y, ZHOU F, ZHANG D et al. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy[D]. Nanoscale, 8, 3530-3538(2016).

    [14] HE B, SHI Y, LIANG Y et al. Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages[D]. Nature Communications, 9, 2393-2399(2018).

    [15] SAHA D, HELDT C L, GENCOGLU M F et al. A study on the cytotoxicity of carbon-based materials. Materials Science & Engineering[D]. C: Materials for Biological Applications, 68, 101-108(2016).

    [16] SONG M, YUAN S, YIN J et al. Size-dependent toxicity of nano-C60 aggregates: more sensitive indication by apoptosis-related Bax translocation in cultured human cells[D]. Environmental Science & Technology, 46, 3457-3464(2012).

    [17] ALLEGRI M, PERIVOLIOTIS D K, BIANCHI M G et al. Toxicity determinants of multi-walled carbon nanotubes: The relationship between functionalization and agglomeration[D]. Toxicology Reports, 3, 230-243(2016).

    [18] KIM T W, CHUNG P W et al. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells[D]. Nano Letters, 8, 3724-3727(2008).

    [19] GOBBO O L, SJAASTAD K, RADOMSKI M W et al. Magnetic nanoparticles in cancer theranostics[D]. Theranostics, 5, 1249-1263(2015).

    [20] ZHAO Q, LIN Y, HAN N et al. Mesoporous carbon nanomaterials in drug delivery and biomedical application[D]. Drug Delivery, 24, 94-107(2017).

    [21] SHRESTHA R G, MAJI S, SHRESTHA L K et al. Nanoarchitectonics of nanoporous carbon materials in supercapacitors applications[D]. Nanomaterials, 10, 639(2020).

    [22] CHENG Y J, LUO G F, ZHU J Y et al. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles[D]. ACS Applied Materials & Interfaces, 7, 9078-9087(2015).

    [23] CHEN Y, SHI J. Mesoporous carbon biomaterials[D]. Science China Materials, 58, 241-257(2015).

    [24] MENG Y, WANG S, LI C et al. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres[D]. Biomaterials, 100, 34-142(2016).

    [25] PEI F, AN T, ZANG J et al. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries[D]. Advanced Energy Materials, 6, 1502539(2016).

    [26] ZHU J, LIAO L, BIAN X et al. pH-controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres[D]. Small, 8, 2715-2720(2012).

    [27] WU F, LIU Y, LU X et al. Controllable preparation of polydopamine modified gold nanoflowers and its application in photothermal therapy[D]. Chemical Journal of Chinese Universities, 41, 465-472(2020).

    [28] TIAN W, ZHANG H, DUAN X et al. Porous carbons: structure-criented design and versatile applications[D]. Advanced Functional Materials, 30, 1909265(2020).

    [29] LI S, CHENG C, ZHAO X et al. Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angewandte Chemie,[D]. International Edition in English, 57, 1856-1862(2018).

    [30] BENZIGAR M R, JOSEPH S, ILBEYGI H et al. Highly crystalline mesoporous C60 with ordered pores: a class of nanomaterials for energy applications.[D]. Angewandte Chemie, International Edition in English, 57, 569-573(2018).

    [31] ZHANG P, WANG L, YANG S et al. Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking[D]. Nature Communications, 8, 15020(2017).

    [32] ZHANG Z, JIA B, LIU L et al. Hollow multihole carbon bowls: a stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries[D]. ACS Nano, 13, 11363-11371(2019).

    [33] PENG L, HUNG C T, WANG S et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures[D]. Journal of the American Chemical Society, 141, 7073-7080(2019).

    [34] LI Q, GUO J, ZHU H et al. Space-confined synthesis of ZIF-67 nanoparticles in hollow carbon nanospheres for CO2 adsorption[D]. Small, 15, e1804874(2019).

    [35] CAO X, XIA J, MENG X et al. Stimuli-responsive DNA-gated nanoscale porous carbon derived from ZIF-8[D]. Advanced Functional Materials, 29, 1902237(2019).

    [36] ZHANG F, LIU Y, LEI J et al. Metal-organic-framework-derived carbon nanostructures for site-specific dual-modality photothermal/ photodynamic thrombus therapy[D]. Advanced Science, 6, 1901378(2019).

    [37] ZHU D, CHENG K, WANG Y et al. Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline- co-p-phenylenediamine) for supercapacitors[D]. Electrochimica Acta, 224, 17-24(2017).

    [38] XIA Y, MOKAYA R. Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials[D]. Chemistry of Materials, 17, 1553-1560(2005).

    [39] PANICKAR R, SOBHAN C B, CHAKRAVORTI S. Chemical vapor deposition synthesis of carbon spheres: Effects of temperature and hydrogen[D]. Vacuum, 172, 109108(2020).

    [40] XIA Y, MOKAYA R. synthesis of Ordered mesoporous carbon and nitrogen-doped carbor materials with graphitic pore walls viaa simple chemical vapor deposition method[D]. Advanced Materials, 16, 1553-1558(2004).

    [41] LI W, LIU J, ZHAO D. Mesoporous materials for energy conversion and storage devices[D]. Nature Reviews Materials, 1, 16023(2016).

    [42] KNOSSALLA J, JALALPOOR D, SCHüTH F. Hands-on guide to the synthesis of mesoporous hollow graphitic spheres and core-shell materials[D]. Chemistry of Materials, 29, 2062-7072(2017).

    [43] ANG T P, BORGNA A. A rapid hard template method for the synthesis of N-doped mesoporous carbon replicated from TUD-1. Microporous &[D]. Mesoporous Materials, 158, 99-107(2012).

    [44] CHUENCHOM L, KRAEHNERT R, SMARSLY B M. Recent progress in soft-templating of porous carbon materials[D]. Soft Matter, 8, 10801-10813(2012).

    [45] LIU J, WICKRAMARATNE N P, QIAO S Z et al. Molecular-based design and emerging applications of nanoporous carbon spheres[D]. Nat. Mater., 14, 763-774(2015).

    [46] PETKOVICH N D, STEIN A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating[D]. Chemical Society Reviews, 42, 3721-3739(2013).

    [47] WANG S, LV P, SHEN T et al. Research progress in preparation of biomass-derived mesoporous carbon materials[D]. Modern Chemical Industry, 38, 23-26(2018).

    [48] WANG T, WANG H. Research progress on porous carbon materials[D]. Scientia Sinica Chimica, 49, 729-740(2019).

    [49] ZHUO R, ZHANG X, WANG X et al. Research progress in functional metal-organic frameworks for tumor therapy[D]. Acta Chimica Sinica, 77, 1156(2019).

    [50] WU H B, LOU X W D. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges[D]. Science Advances, 3, eaap9252(2017).

    [51] WANG J, WANG Y, HU H et al. From metal-organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives[D]. Nanoscale, 12, 4238-4268(2020).

    [52] TANG J, SALUNKHE R R, LIU J et al. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon[D]. Journal of the American Chemical Society, 137, 1572-1580(2015).

    [53] BORCHARDT L, ZHU Q-L, CASCO M E et al. Toward a molecular design of porous carbon materials[D]. Materials Today, 20, 592-610(2017).

    [54] HU M, REBOUL J, FURUKAWA S et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[D]. Journal of the American Chemical Society, 134, 2864-2867(2012).

    [55] TORAD N L, HU M, KAMACHI Y et al. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals[D]. Chemical Communications (Cambridge, England), 49, 2521-2523(2013).

    [56] LIU H, YANG D, WANG X et al. Metal-organic framework- derived hollow carbon materials for electrochemical energy storage and oxygen reduction reaction[D]. Chinese Journal of Inorganic Chemistry, 35, 1921-1933(2019).

    [57] LI J, GAO Y, HAN K et al. High performance hierarchical porous carbon derived from distinctive plant tissue for supercapacitor[D]. Scientific Reports, 9, 17270(2019).

    [58] DU J, YU Y, LV H et al. Cauliflower-derived porous carbon without activation for electrochemical capacitor and CO2 capture applications[D]. Journal of Nanoparticle Research, 20, 15(2018).

    [59] QIAN W, GUO J, YAN F. Design, synthesis and application of poly (ionic liquid)-based functional materials[D]. Polym Bull., 10, 94-104(2015).

    [60] XU F, TANG Z, HUANG S et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[D]. Nature Communications, 6, 7221(2015).

    [61] LI Z, WU D, HUANG X et al. Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking[D]. Energy & Environmental Science, 7, 3006(2014).

    [62] WU W, CHENG J, SHANG Y. Progress on preparation and application of porous carbon spheres[D]. New chem. Mat., 42, 217-219(2014).

    [63] O.NYAMORI V, MHLANGA D S, COVILLE J N. The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials[D]. Journal of Organometallic Chemistry, 693, 2205-2222(2008).

    [64] HO B N, PFEFFER C M, SINGH A T K. Update on nanotechnology-based drug delivery systems in cancer treatment[D]. Anticancer Research, 37, 5975-5981(2017).

    [65] CHEN D, DOUGHERTY C A, ZHU K et al. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery[D]. Journal of Controlled Release, 210, 230-245(2015).

    [66] LI H, LIN Q, CHEN J et al. Research progress of carbon nanomaterials in cancer drug delivery. Chemical Journal of[D]. Chinese Universities., 50, 100-106(2019).

    [67] ZHU S, XU G. Single-walled carbon nanohorns and their applications[D]. Nanoscale, 2, 2538-2549(2010).

    [68] LAI L, BARNARD A S. Functionalized nanodiamonds for biological and medical applications[D]. Journal of Nanoscience & Nanotechnology, 15, 989-999(2015).

    [69] NARDECCHIA S, CARRIAZO D, FERRER M L et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications[D]. Chemical Society Reviews, 42, 794-830(2013).

    [70] CHENG L, WANG C, FENG L et al. Functional nanomaterials for phototherapies of cancer[D]. Chemical Reviews, 114, 10869-10939(2014).

    [71] KAPRI S, MAITI S, BHATTACHARYYA S. Lemon grass derived porous carbon nanospheres functionalized for controlled and targeted drug delivery[D]. Carbon, 100, 223-235(2016).

    [72] KAPRI S, MAJEE R, BHATTACHARYYA S. Chemical modifications of porous carbon nanospheres obtained from ubiquitous precursors for targeted drug delivery and live cell imaging[D]. Acs Sustainable Chemistry & Engineering, 6, 8503-8514(2018).

    [73] XING Y, DAI L. Nanodiamonds for nanomedicine[D]. Nanomedicine, 4, 207-218(2009).

    [74] LI C, MENG Y, WANG S et al. Mesoporous carbon nanospheres featured fluorescent aptasensor for multiplediagnosis of cancer in vitro and in vivo[D]. ACS Nano, 9, 12096-12103(2015).

    [75] LI C, QIAN M, WANG S et al. Aptavalve-gated mesoporous carbon nanospheres image cellular mucin and provide on-demand targeted drug delivery[D]. Theranostics, 7, 3319-3325(2017).

    [76] CHEN C, GENG J, PU F et al. Polyvalent nucleic acid/mesoporous silica nanoparticle conjugates: dual stimuli-responsive vehicles for intracellular drug delivery. Angewandte Chemie,[D]. International Edition in English, 50, 882-886(2011).

    [77] CHOI Y, KIM S, CHOI M-H et al. Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo[D]. Advanced Functional Materials, 24, 5781-5789(2014).

    [78] KONG Q, ZHANG L, LIU J et al. Facile synthesis of hydrophilic multi-colour and upconversion photoluminescent mesoporous carbon nanoparticles for bioapplications[D]. Chemical Communications (Cambridge, England), 50, 15772-15775(2014).

    [79] LI X, YAN Y, LIN Y et al. Hollow mesoporous carbon as a near-infrared absorbing carrier compared with mesoporous carbon nanoparticles for chemo-photothermal therapy[D]. Journal of Colloid and Interface Science, 494, 159-169(2017).

    [80] CHEN Y, XU P, WU M et al. Colloidal RBC-shaped, hydrophilic, and hollow mesoporous carbon nanocapsules for highly efficient biomedical engineering[D]. Advanced Materials, 26, 4294-4301(2014).

    [81] FANG Y, ZHENG G, YANG J et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery[D]. Angewandte Chemie, International Edition in English, 53, 5366-5370(2014).

    [82] DU X, ZHAO C, ZHOU M et al. Hollow carbon nanospheres with tunable hierarchical pores for drug, gene, and photothermal synergistic treatment[D]. Small, 13, 1602592(2017).

    [83] SINGHAL R, ORYNBAYEVA Z, KALYANA SUNDARAM R V et al. Multifunctional carbon-nanotube cellular endoscopes[D]. Nat. Nanotechnol., 6, 57-64(2011).

    [84] CHENG R, MENG F, DENG C et al. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery[D]. Biomaterials, 34, 3647-3657(2013).

    [85] VEISEH O, GUNN J W, ZHANG M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging[D]. Advanced Drug Delivery Reviews, 62, 284-304(2010).

    [86] CARDONE R A, CASAVOLA V, RESHKIN S J. The role of disturbed pH dynamics and the Na +/H + exchanger in metastasis[D]. Nature Reviews: Cancer, 5, 786-795(2005).

    [87] HUANG X, WU S, DU X. Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release[D]. Carbon, 101, 135-142(2016).

    [88] KESSENBROCK K, PLAKS V, WERB Z. Matrix metalloproteinases: regulators of the tumor microenvironment[D]. Cell, 141, 52-67(2010).

    [89] SCHILLING D, GARRIDO C, COMBS S E et al. The Hsp70 inhibiting peptide aptamer A17 potentiates radiosensitization of tumor cells by Hsp90 inhibition[D]. Cancer Letters, 390, 146-152(2017).

    [90] BRAYMAN M, THATHIAH A, CARSON D D. MUC1: a multifunctional cell surface component of reproductive tissue epithelia[D]. Reproductive Biology and Endocrinology, 2(2004).

    [91] SARKAR S, GULATI K, MISHRA A et al. Protein nanocomposites: Special inferences to lysozyme based nanomaterials[D]. International Journal of Biological Macromolecules, 151, 467-482(2020).

    [92] SCHAFER F Q, BUETTNER G R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/ glutathione couple[D]. Free Radical Biology and Medicine, 30, 1191-1212(2001).

    [93] ZHOU L, DONG K, CHEN Z W et al. Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy[D]. Carbon, 82, 479-488(2015).

    [94] BROADERS K E, GRANDHE S, FRECHET J M. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics[D]. Journal of the American Chemical Society, 133, 756-758(2011).

    [95] CHEN W, BALAKRISHNAN K, KUANG Y et al. Reactive oxygen species (ROS) inducible DNA cross-linking agents and their effect on cancer cells and normal lymphocytes[D]. Journal of Medicinal Chemistry, 57, 4498-4510(2014).

    [96] WANG L Z, LE L, KANG A et al. Effects on the dispersion and cytotoxicity of ordered mesoporous carbon nanoparticles modified with PVP or PEG[D]. Journal of Pharmacy Practice, 34, 158-163(2016).

    [97] GUPTA N, RAI D B, JANGID A K et al. A Review of theranostics applications and toxicities of carbon nanomaterials[D]. Current Drug Metabolism, 20, 506-532(2019).

    [98] XU G, LIU S, NIU H et al. Functionalized mesoporous carbon nanoparticles for targeted chemo-photothermal therapy of cancer cells under near-infrared irradiation[D]. RSC Advance, 4, 33986-33997(2014).

    [99] XUE C, LONGFEI T, TIANLONG L et al. Micro-nanomaterials for tumor microwave hyperthermia: design, preparation, and application[D]. Current Drug Delivery, 14, 307-322(2017).

    [100] SHAH B P, PASQUALE N, DE G et al. Core-shell nanoparticle- based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis[D]. ACS Nano, 8, 9379-9387(2014).

    [101] WANG Y, GU H. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery[D]. Advanced Materials, 27, 576-585(2015).

    [102] WU F, SUN B, CHU X et al. Hyaluronic acid-modified porous carbon-coated Fe3O4 nanoparticles for magnetic resonance imaging- guided photothermal/chemotherapy of tumors[D]. Langmuir, 35, 13135-13144(2019).

    [103] HAI W, YULIANG Z, GUANGJUN N. Multifunctional nanoparticle systems for combined chemoand photothermal cancer therapy[D]. Frontiers of Materials Science, 7, 118-128(2014).

    [104] ZHANG Y, HAN L, HU L-L et al. Mesoporous carbon nanoparticles capped with polyacrylic acid as drug carrier for bi-trigger continuous drug release[D]. Journal of Materials Chemistry B, 4, 5178-5184(2016).

    [105] ZHANG Y, CHANG Y-Q, HAN L et al. Aptamer-anchored di-polymer shell-capped mesoporous carbon as a drug carrier for bi-trigger targeted drug delivery[D]. Journal of Materials Chemistry B, 5, 6882-6889(2017).

    [106] YANG Z, WANG L, LIU Y et al. ZnO capped flower-like porous carbon-Fe3O4 composite as carrier for bi-triggered drug delivery. Materials Science & Engineering[D]. C: Materials for Biological Applications, 107, 110256(2020).

    [107] CHEN L, ZHENG J, DU J et al. Folic acid-conjugated magnetic ordered mesoporous carbon nanospheres for doxorubicin targeting delivery. Materials Science & Engineering[D]. C: Materials for Biological Applications, 104, 109939(2019).

    [108] CHEN L, ZHANG H, ZHENG J et al. Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application. Materials Science & Engineering[D]. C: Materials for Biological Applications, 84, 21-31(2018).

    [109] WANG H, CAO G, GAI Z et al. Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles[D]. Nanoscale, 7, 7885-7895(2015).

    [110] WU F, ZHANG M, LU H et al. Triple stimuli-responsive magnetic Hollow porous carbon-based nanodrug delivery system for magnetic resonance imaging-guided synergistic photothermal/ chemotherapy of cancer[D]. ACS Appl. Mater. Interfaces, 10, 21939-21949(2018).

    [111] ZHANG D X, ESSER L, VASANI R B et al. Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications[D]. Nanomedicine (Lond), 14, 3213-3230(2019).

    [112] ZHANG J, ZHANG J, LI W et al. Degradable hollow Mesoporous silicon/carbon nanoparticles for photoacoustic imaging-guided highly effective chemo-thermal tumor therapy in vitro and in vivo[D]. Theranostics, 7, 3007-3020(2017).

    [113] GUO W H, QI Y F, ZHANG Y Q et al. Biocompatible caramelized carbonaceous nanospheres supported paramagnetic ultrathin manganese oxide nanosheets via self-sacrificing reduction as a MRI contrast agent for liver imaging[D]. Carbon, 110, 321-329(2016).

    Tools

    Get Citation

    Copy Citation Text

    Xiaokun CHENG, Yue ZHANG, Haijun Lü, Xinying LIU, Senlin HOU, Aibing CHEN. Porous Carbon Nanomaterials Based Tumor Targeting Drug Delivery System: a Review[J]. Journal of Inorganic Materials, 2021, 36(1): 9

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: May. 6, 2020

    Accepted: --

    Published Online: Jan. 21, 2021

    The Author Email: Aibing CHEN (chen_ab@163.com)

    DOI:10.15541/jim20200240

    Topics