Chinese Optics, Volume. 16, Issue 5, 1045(2023)

Lightweight YOLOv5s vehicle infrared image target detection

Yan-lei LIU*, Meng-zhe LI, and Xuan-xuan WANG
Author Affiliations
  • Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, College of Physics, Henan Normal University, Xinxiang 453007, China
  • show less
    Figures & Tables(14)
    YOLOv5s algorithm structure
    Improved YOLOv5s algorithm structure
    (a) Ordinary convolution and (b) Ghost convolution (Φ is a linear operation)
    CA structure
    SPD-Conv (Scale=2)
    Data augmentation results. (a) Mosaic augmentation; (b) MixUp augmentation; (c) Copy-Paste augmentation
    Detection results of different algorithms. (a) YOLOv3-tiny; (b) YOLOv4-tiny; (c) YOLOv5n; (d) YOLOv6-N; (e) YOLO7-tiny; (f) YOLO5s; (g) proposed in this paper
    • Table 1. Optimized prior anchor size

      View table
      View in Article

      Table 1. Optimized prior anchor size

      特征图尺度160×16080×8040×40
      感受野大小
      [6,8][14,37][35,94]
      先验框[7,19][31,26][96,68]
      [15,13][50,37][154,145]
    • Table 2. Performance comparison of lightweight for YOLOv5s and YOLOv5s-G

      View table
      View in Article

      Table 2. Performance comparison of lightweight for YOLOv5s and YOLOv5s-G

      Modelt/hours Size/MBParams/MGFLOPsP(%) R(%) mAP(%)FPS
      YOLOv5s48.7713.707.0215.887.169.880.8119
      YOLOv5s-G30.257.463.688.086.166.377.5137
    • Table 3. Performance comparison of different loss functions

      View table
      View in Article

      Table 3. Performance comparison of different loss functions

      Modelt/hours P(%) R(%) mAP(%)FPS
      YOLOv5s-G30.2586.166.377.5137
      YOLOv5s-G-EIoU24.3184.568.778.9141
      YOLOv5s-G-SIoU24.6285.867.277.8139
      YOLOv5s-G-αIoU23.5085.969.379.8147
    • Table 4. Performance comparison of multi-scale fusion

      View table
      View in Article

      Table 4. Performance comparison of multi-scale fusion

      Modelt/hours Size/MBParams/MGFLOPsP(%) R(%) mAP(%)FPS
      YOLOv5s-G-αIoU23.507.463.688.085.969.379.8147
      YOLOv5s-G1-αIoU26.898.603.759.686.073.683.6125
      YOLOv5s-G2-αIoU24.562.730.957.284.572.882.9154
      YOLOv5s-G2-αIoU-KMeans25.622.730.957.285.572.483154
    • Table 5. Performance comparison of different attention mechanisms

      View table
      View in Article

      Table 5. Performance comparison of different attention mechanisms

      Modelt/hours Size/MBParams/MGFLOPsP(%) R(%) mAP(%)FPS
      YOLOv5s-G2-αIoU-KMeans25.622.730.957.285.572.483154
      YOLOv5s-G2-αIoU-KMeans-SE30.952.750.967.286.073.584.1149
      YOLOv5s-G2-αIoU-KMeans-ECA26.062.730.957.285.573.884.2145
      YOLOv5s-G2-αIoU-KMeans-CBAM28.212.760.967.385.773.484135
      YOLOv5s-G2-αIoU-KMeans-CA28.622.760.967.386.673.684.3139
    • Table 6. SPD-Conv effect

      View table
      View in Article

      Table 6. SPD-Conv effect

      Modelt/hours Size/MBParams/MGFLOPsP(%) R(%) mAP(%)FPS
      YOLOv5s-G2-αIoU-Kmeans-CA28.622.760.967.386.673.684.3139
      YOLOv5s-G2-αIoU-Kmeans-CA-SPD30.283.01.099.487.474.685.0132
    • Table 7. Comparison with other advanced algorithms

      View table
      View in Article

      Table 7. Comparison with other advanced algorithms

      ModelSize/MBParams/MGFLOPsP(%) R(%) mAP(%)FPS
      SSD186.023.70115.768.955.763.288
      EfficientDet302.039.40107.572.858.467.852
      YOLOv4+GhostNet150.339.3025.681.166.977.7112
      YOLOv5-MobileNetV37.94.09.383.767.576.9128
      YOLOv3-tiny16.68.6712.979.354.962.9175
      YOLOv4-tiny12.96.2716.278.957.367.2149
      YOLOv5n3.71.765.183.666.176.6164
      YOLOv6-N9.34.3011.184.871.580.3208
      YOLOv7-tiny12.36.0213.284.274.783.6143
      YOLOv5s13.77.0215.887.169.880.8119
      proposed in this paper3.01.099.487.474.685.0132
    Tools

    Get Citation

    Copy Citation Text

    Yan-lei LIU, Meng-zhe LI, Xuan-xuan WANG. Lightweight YOLOv5s vehicle infrared image target detection[J]. Chinese Optics, 2023, 16(5): 1045

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Dec. 14, 2022

    Accepted: Mar. 24, 2023

    Published Online: Oct. 27, 2023

    The Author Email:

    DOI:10.37188/CO.2022-0254

    Topics