High Power Laser and Particle Beams, Volume. 35, Issue 12, 124007(2023)

Design of 648 MHz superconducting cavity tuner forChina Spallation Neutron Source phase II

Ming Liu1,3,4, Zhenghui Mi1,3,4、*, Weimin Pan1,3,4, Rui Ge1,3,4, Feisi He1,3,4, Wenzhong Zhou1,2,3,4, Miaofu Xu1,3, and Zihan Wang1,3,4
Author Affiliations
  • 1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2Spallation Neutron Source Science Center, Dongguan 523803, China
  • 3Key Laboratory of Particle Accelerator Physics and Technology, Chinese Academy of Sciences, Beijing 100049, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(20)
    Variation of cavity input power demand with frequency detuning
    Plot of superconducting cavity Lorentz forcedetuning versus tuner stiffness
    Schematic of tuner design model
    Diagram of tuner 3D model
    Simulation analysis of tuner mechanical characteristics
    Diagram of mechanical tuning axial model
    Diagram of mechanical tuning axial simplifiedmodel
    Diagram of piezoelectric ceramic tuning axial model
    Diagram of simplified piezoelectric ceramic tuning axialsimplified model
    Variation of acceleration gradient with time during the pulse
    Dynamic Lorentz force detuning during the pulse
    Superconducting cavity response during pulses (0~4 ms)
    Photo of tuner mounted test on 650 MHz single cell cavity
    Plot of tuner stepper motor steps versus superconducting cavity frequency variation and tuner displacement variation
    • Table 1. Superconducting cavity operating parameters

      View table
      View in Article

      Table 1. Superconducting cavity operating parameters

      working frequency/MHzbandwidth of cavity/Hzoperation modepulse frequency/Hzoperating gradient/(MV·m−1)
      648668pulse2514
      KL/(Hz·m2·MV−2) pressure sensitivity/(Hz·Pa−1) field flatness(R/Q)/Ω beam current/mA
      1.50.15> 90%31040
      operation temperture/Koperation pressure/Pamaximum allowable working pressure/MPacavity axial stiffness/(N·mm−1) tuning sensitivity/(kHz·mm−1)
      231000.2(room temperaturer), 0.4(2 K)2225171
    • Table 2. Tuner system requirement parameters

      View table
      View in Article

      Table 2. Tuner system requirement parameters

      tuner system stiffness/(kN·mm−1) slow tuner frequency range/kHzstepper motor resolution/Hzpiezo tuner frequency range/kHzpiezo tuner resolution/Hz
      > 100> 1001014
    • Table 3. Mechanical properties of 648 MHz superconducting cavity

      View table
      View in Article

      Table 3. Mechanical properties of 648 MHz superconducting cavity

      partsmaterialaxial flexibility/(mm·kN−1) axial rigidity/(kN·mm−1)
      cavityNb0.44942.225(Kc)
      front washer diskNb55Ti0.033929.52( $ {K}_{\mathrm{w}1} $)
      end washer diskNb55Ti0.0191452.24( $ {K}_{\mathrm{w}2} $)
      helium tankTi0.008996111.16( $ {K}_{\mathrm{h}} $)
      tuner bellowTi32.3270.031( $ {K}_{\mathrm{b}} $)
      tuner316L0.00796125.61( $ {K}_{\mathrm{t}} $)
      interface ringsTi0.00196509.68( $ {K}_{\mathrm{i}} $)
      piezo actuatorHP0.012580( $ {K}_{\mathrm{p}} $)
    • Table 4. Force and displacement status of each component, when the mechanical tuner produces a displacement of \begin{document}$ 1\;{\text{μ}}{\rm{m}} $\end{document}

      View table
      View in Article

      Table 4. Force and displacement status of each component, when the mechanical tuner produces a displacement of \begin{document}$ 1\;{\text{μ}}{\rm{m}} $\end{document}

      partsforce/Ndisplacement/ ${\text{μ}}\mathrm{m} $
      piezo actuator/interface rings−2.03−0.017
      tuner bellow/end dishes−0.03−0.980
      helium tank/Front dishes−2.00−0.086
      cavity2.000.898
    • Table 5. Force and displacement status of each component, when the piezoelectric ceramics produces a displacement of \begin{document}$ 1\;{\text{μ}}{\rm{m}} $\end{document}

      View table
      View in Article

      Table 5. Force and displacement status of each component, when the piezoelectric ceramics produces a displacement of \begin{document}$ 1\;{\text{μ}}{\rm{m}} $\end{document}

      partsforce/Ndisplacement/ $ {\text{μ}}{\rm{m}} $
      tuner/interface rings−2.02−0.020
      tuner bellow/end dishes−0.03−0.980
      helium tank/front dishes−1.99−0.085
      cavity1.990.895
    • Table 6. Lorentz force detuning parameters before and after installing the tuner

      View table
      View in Article

      Table 6. Lorentz force detuning parameters before and after installing the tuner

      stateLFD factor/ (Hz·m2·MV−2) maximum detuning/Hz
      without tuner9.321827
      with tuner1.48290
    Tools

    Get Citation

    Copy Citation Text

    Ming Liu, Zhenghui Mi, Weimin Pan, Rui Ge, Feisi He, Wenzhong Zhou, Miaofu Xu, Zihan Wang. Design of 648 MHz superconducting cavity tuner forChina Spallation Neutron Source phase II[J]. High Power Laser and Particle Beams, 2023, 35(12): 124007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 21, 2023

    Accepted: Sep. 25, 2023

    Published Online: Dec. 27, 2023

    The Author Email: Mi Zhenghui (mizh@ihep.ac.cn)

    DOI:10.11884/HPLPB202335.230227

    Topics