Laser Technology, Volume. 46, Issue 1, 1(2022)
Twenty-year research and development of SNSPDs:Review and prospects
[1] [1] GOL’TSMAN G N, OKUNEV O, CHULKOVA G, et al. Picosecond superconducting single-photon optical detector [J]. Applied Physics Letters, 2001, 79(6): 705-707.
[2] [2] MARSILI F, VERMA V B, STERN J A, et al. Detecting single infrared photons with 93% system efficiency [J]. Nature Photonics, 2013, 7(3): 210-214.
[3] [3] ZHANG W J, YOU L X, LI H, et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550nm wavelength operational at compact cryocooler temperature [J]. Science China Physics, Mechanics & Astronomy, 2017, 60(12): 120314.
[4] [4] ESMAEIL ZADEH I, LOS J W N, GOURGUES R B M, et al. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution [J]. APL Photonics, 2017, 2(11): 111301.
[5] [5] REDDY D V, NEREM R R, LITA A E, et al. Exceeding 95% system efficiency within the telecom C-band in superconducting nanowire single photon detectors [C]//Conference on Lasers and Electro-Optics (2019). Washington DC, USA: Optical Society of America, 2019: FF1A.3.
[6] [6] HU P, LI H, YOU L X, et al. Detecting single infrared photons toward optimal system detection efficiency [J]. Optics Express, 2020, 28(24): 36884-36891.
[7] [7] MENG Y, ZOU K, HU N, et al. Fractal superconducting nanowires detect infrared single photons with 91% polarization-independent system efficiency and 19ps timing resolution [J/OL]. .https://arxiv.org/abs/2012.06730.
[8] [8] REDDY D V, NEREM R R, NAM S W, et al. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550nm [J]. Optica, 2020, 7(12): 1649-1653.
[9] [9] CHANG J, LOS J W N, TENORIO-PEARL J O, et al. Detecting telecom single photons with 99.5(-2.07+0.5)% system detection efficiency and high time resolution [J]. APL Photonics, 2021, 6(3): 036114.
[10] [10] WOLLMAN E E, VERMA V B, BEYER A D, et al. UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4K operating temperature[J]. Optics Express, 2017, 25(22): 26792.
[11] [11] KORZH B, ZHAO Q Y, ALLMARAS J P, et al. Demonstration of sub-3ps temporal resolution with a superconducting nanowire single-photon detector[J]. Nature Photonics, 2020, 14(4): 250-255.
[12] [12] MNZBERG J, VETTER A, BEUTEL F, et al. Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity[J]. Optica, 2018, 5(5): 658-665.
[13] [13] ZHANG J, BOIADJIEVA N, CHULKOVA G, et al. Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors[J]. Electronics Letters, 2003, 39(14): 1086-1088.
[14] [14] HADFIELD R H, HABIF J L, SCHLAFER J, et al. Quantum key distribution at 1550nm with twin superconducting single-photon detectors [J]. Applied Physics Letters, 2006, 89(24): 241129.
[15] [15] KHATRI F I, ROBINSON B S, SEMPRUCCI M D, et al. Lunar laser communication demonstration operations architecture [J]. Acta Astronautica, 2015, 111: 77-83.
[16] [16] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[17] [17] ZHU J, CHEN Y J, ZHANG L B, et al. Demonstration of measuring sea fog with an SNSPD-based Lidar system[J]. Scientific Reports, 2017, 7(1): 15113.
[18] [18] LI H, CHEN S J, YOU L X, et al. Superconducting nanowire single photon detector at 532nm and demonstration in satellite laser ranging[J]. Optics Express, 2016, 24(4): 3535.
[19] [19] TAYLOR G G, MOROZOV D, GEMMELL N R, et al. Photon counting LIDAR at 2.3μm wavelength with superconducting nanowires[J]. Optics Express, 2019, 27(26): 38147.
[20] [20] ZHANG B, GUAN Y Q, XIA L H, et al. An all-day lidar for detecting soft targets over 100km based on superconducting nanowire single-photon detectors [J]. Superconductor Science and Technology, 2021, 34(3): 034005.
[21] [21] TAYLOR G G, McCARTHY A, KORZH B, et al. Long-range depth imaging with 13ps temporal resolution using a superconducting nanowire singlephoton detector [C]//Conference on Lasers and Electro-Optics. Washington DC, USA: Optical Society of America, 2020: SM2M.6.
[22] [22] HADFIELD R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 2009, 3(12): 696-705.
[23] [23] NATARAJAN C M, TANNER M G, HADFIELD R H. Superconducting nanowire single-photon detectors: Physics and applications [J]. Superconductor Science and Technology, 2012, 25(6): 063001.
[24] [24] DAULER E A, GREIN M E, KERMAN A J, et al. Review of superconducting nanowire single-photon detector system design options and demonstrated performance [J]. Optical Engineering, 2014, 53(8): 081907.
[25] [25] YOU L X. Recent progress on superconducting nanowire single photon detector [J]. Chinese Science: Information Science, 2014, 44 (3): 370-388(in Chinese).
[26] [26] ENGEL A, RENEMA J J, IL’IN K, et al. Detection mechanism of superconducting nanowire single-photon detectors [J]. Superconductor Science and Technology, 2015, 28(11): 114003.
[27] [27] HU X L, CHENG Y H, GU Ch, et al. Superconducting nanowire single-photon detectors: Recent progress [J]. Science Bulletin, 2015, 60(23): 1980-1983.
[28] [28] HADFIELD R H, JOHANSSON G. Cham Superconducting devices in quantum optics [M]. Berlin, Germany: Springer International Publishing, 2016.
[29] [29] YAMASHITA T, MIKI S, TERAI H. Recent progress and application of superconducting nanowire single-photon detectors[J]. IEICE Transactions on Electronics, 2017, E100-C(3): 274-282.
[30] [30] YOU L X. Status and prospect of superconducting nanowire single photon detection [J]. Infrared and Laser Engineering, 2018, 47 (12): 1202001(in Chinese).
[31] [31] FERRARI S, SCHUCK C, PERNICE W. Waveguide-integrated superconducting nanowire single-photon detectors [J]. Nanophotonics, 2018, 7(11): 1725-1758.
[32] [32] HOLZMAN I, IVRY Y. Superconducting nanowires for single-photon detection: Progress, challenges, and opportunities [J]. Advanced Quantum Technologies, 2019, 2(3/4): 1800058.
[33] [33] HU X L, ZOU K, HU N, et al. Timing properties of superconducting nanowire single-photon detectors [C]//Quantum Optics and Photon Counting 2019. Prague, Czech Republic:SPIE, 2019: 1102704.
[34] [34] YOU L X. Superconducting nanowire single-photon detectors for quantum information [J]. Nanophotonics, 2020, 9(9): 2673-2692.
[35] [35] POLAKOVIC T, ARMSTRONG W, KARAPETROV G, et al. Unconventional applications of superconducting nanowire single photon detectors [J]. Nanomaterials, 2020, 10(6): 1198.
[36] [36] ESMAEIL ZADEH I , CHANG J, LOS J W N, et al. Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications [J]. Applied Physics Letters, 2021, 118(19): 190502.
[37] [37] STEINHAUER S, GYGER S, ZWILLER V. Progress on large-scale superconducting nanowire single-photon detectors [J]. Applied Physics Letters, 2021, 118(10): 100501.
[38] [38] SHIBATA H. Review of superconducting nanostrip photon detectors using various superconductors [J]. IEICE Transactions on Electronics, 2021,E104-C(9):429-434.
[39] [39] CHEN J P, ZHANG C, LIU Y, et al. Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509km[J]. Physical Review Letters, 2020, 124(7): 070501.
[40] [40] FANG X T, ZENG P, LIU H, et al. Implementation of quantum key distribution surpassing the linear rate-transmittance bound [J]. Nature Photonics, 2020, 14(7): 422-425.
[41] [41] ZHAO Q Y, ZHU D, CALANDRI N, et al. Single-photon imager based on a superconducting nanowire delay line [J]. Nature Photonics, 2017, 11(4): 247-251.
[42] [42] SUN X Q, ZHANG W J, ZHANG C J, et al. Polarization resolving and imaging with a single-photon sensitive superconducting nanowire array [J]. Optics Express, 2021, 29(7): 11021.
[43] [43] CHEN S J, LIU D K, ZHANG W X, et al. Time-of-flight laser ranging and imaging at 1550nm using low-jitter superconducting nanowire single-photon detection system [J]. Applied Optics, 2013, 52(14): 3241.
[44] [44] YU J, ZHANG R L, GAO Y F, et al. Intravital confocal fluorescence lifetime imaging microscopy in the second near-infrared window [J]. Optics Letters, 2020, 45(12): 3305.
[45] [45] LIAO J L, YIN Y X, ZHANG R L, et al. Depth-resolved NIR-Ⅱ fluorescence mesoscope[J]. Biomedical Optics Express, 2020, 11(5): 2366-2372.
[46] [46] McCARTHY A, KRICHEL N J, GEMMELL N R, et al. Kilometer-range, high resolution depth imaging via 1560nm wavelength single-photon detection [J]. Optics Express, 2013, 21(7): 8904-8915.
[47] [47] HU N, FENG Y F, XU L, et al. Photon-counting LIDAR based on a fractal SNSPD [C]// Optical Fiber Communication Conference (OFC) 2021. Washington D C, USA: Optical Society of America, 2021: Tu5E.4.
[48] [48] WOLLMAN E E, VERMA V B, LITA A E, et al. Kilopixel array of superconducting nanowire single-photon detectors [J]. Optics Express, 2019, 27(24): 35279-35289.
[49] [49] CHENG R, ZOU C L, GUO X, et al. Broadband on-chip single-photon spectrometer [J]. Nature Communications, 2019, 10(1): 4104.
[50] [50] KOVALYUK V, KAHL O, FERRARI S, et al. On-chip single-photon spectrometer for visible and infrared wavelength range [J]. Journal of Physics: Conference Series, 2018, 1124(5): 051045.
[51] [51] GEMMELL N R, McCARTHY A, LIU B, et al. Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector [J]. Optics Express, 2013, 21(4): 5005-5013.
[52] [52] ZHONG T, HU X L, WONG F N C, et al. High-quality fiber-optic polarization entanglement distribution at 1.3μm telecom wavelength [J]. Optics Letters, 2010, 35(9): 1392.
[53] [53] TOOMEY E, SEGALL K, BERGGREN K K. Design of a power efficient artificial neuron using superconducting nanowires [J]. Frontiers in Neuroscience, 2019, 13: 933.
[54] [54] TOOMEY E, SEGALL K, CASTELLANI M, et al. Superconducting nanowire spiking element for neural networks [J]. Nano Letters, 2020, 20(11): 8059-8066.
[55] [55] MIKI S, TAKEDA M, FUJIWARA M, et al. Superconducting NbTiN nanowire single photon detectors with low kinetic inductance [J]. Applied Physics Express, 2009, 2: 075002.
[56] [56] MENG Y, ZOU K, HU N, et al. Fractal superconducting nanowire avalanche photodetector at 1550nm with 60% system detection efficiency and 1.05 polarization sensitivity [J]. Optics Letters, 2020, 45(2): 471-474.
[57] [57] XU G Zh, ZHANG W J, YOU L X, et al. Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550nm [J]. Photonics Research, 2021, 9(6): 958-967.
[58] [58] HOCHBERG Y, CHARAEV I, NAM S W, et al. Detecting sub-GeV dark matter with superconducting nanowires [J]. Physical Review Letters, 2019, 123(15): 151802.
[59] [59] VERMA V B, KORZH B, WALTER A B, et al. Single-photon detection in the mid-infrared up to 10μm wavelength using tungsten silicide superconducting nanowire detectors [J]. APL Photonics, 2021, 6(5): 056101.
[60] [60] ROSFJORD K M, YANG J K W, DAULER E A, et al. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating [J]. Optics Express, 2006, 14(2): 527.
[61] [61] HU X L, ZHONG T, WHITE J E, et al. Fiber-coupled nanowire photon counter at 1550nm with 24% system detection efficiency [J]. Optics Letters, 2009, 34(23): 3607-3609.
[62] [62] SEMENOV A, GNTHER B, BTTGER U, et al. Optical and transport properties of ultrathin NbN films and nanostructures [J]. Physical Review B, 2009, 80(5): 054510.
[63] [63] HENRICH D, DRNER S, HOFHERR M, et al. Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content [J]. Journal of Applied Physics, 2012, 112(7): 074511.
[64] [64] MIKI S, FUJIWARA M, SASAKI M, et al. Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates [J]. Applied Physics Letters, 2008, 92(6): 061116.
[65] [65] IVRY Y, KIM C S, DANE A E, et al. Universal scaling of the critical temperature for thin films near the superconducting-to-insulating transition [J]. Physical Review B, 2014, 90(21): 214515.
[66] [66] PAN Y M, ZHOU H, ZHANG L, et al. Superconducting nanowire single-photon detector made of ultrathin γ-Nb4N3 film for mid-infrared wavelengths [J]. Superconductor Science and Technology, 2021, 34(7): 074001.
[67] [67] AKHLAGHI M K, SCHELEW E, YOUNG J F. Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation [J]. Nature Communications, 2015, 6(1): 8233.
[68] [68] YAMASHITA T, MIKI S, MAKISE K, et al. Origin of intrinsic dark count in superconducting nanowire single-photon detectors [J]. Applied Physics Letters, 2011, 99(16): 161105.
[69] [69] BULAEVSKII L N, GRAF M J, KOGAN V G. Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors[J]. Physical Review B, 2012, 85(1): 014505.
[70] [70] YAMASHITA T, MIKI S, QIU W, et al. Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region [J]. Applied Physics Express, 2010, 3(10): 102502.
[71] [71] YANG X Y, LI H, ZHANG W J, et al. Superconducting nanowire single photon detector with on-chip bandpass filter [J]. Optics Express, 2014, 22(13): 16267-16272.
[72] [72] SEMENOV A, ENGEL A, HBERS H W, et al. Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips [J]. The European Physical Journal, 2005, B47(4): 495-501.
[73] [73] BULAEVSKII L N, GRAF M J, BATISTA C D, et al. Vortex-induced dissipation in narrow current-biased thin-film superconducting strips [J]. Physical Review B, 2011, 83(14): 144526.
[74] [74] ENGEL A, LONSKY J, ZHANG X, et al. Detection mechanism in SNSPD: Numerical results of a conceptually simple, yet powerful detection model [J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 2200407.
[75] [75] VODOLAZOV D Y. Single-photon detection by a dirty current-carrying superconducting strip based on the kinetic-equation approach [J]. Physical Review Applied, 2017, 7(3): 034014.
[76] [76] YANG J K W, KERMAN A J, DAULER E A, et al. Modeling the electrical and thermal response of superconducting nanowire single-photon detectors [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 581-585.
[77] [77] KERMAN A J, YANG J K W, MOLNAR R J, et al. Electrothermal feedback in superconducting nanowire single-photon detectors [J]. Physical Review B, 2009, 79(10): 100509.
[78] [78] ZHAO Q Y. High-speed and spatially-resolved superconducting single-photon detection system and its applications[D]. Nanjing: Nanjing University, 2014: 32-38(in Chinese).
[79] [79] KORNEEVA Y P, VODOLAZOV D Y, SEMENOV A V, et al. Optical single-photon detection in micrometer-scale NbN bridges [J]. Physical Review Applied, 2018, 9(6): 064037.
[80] [80] RENEMA J J, GAUDIO R, WANG Q, et al. Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector [J]. Physical Review Letters, 2014, 112(11): 117604.
[81] [81] CHEN S J, YOU L X, ZHANG W J, et al. Dark counts of superconducting nanowire single-photon detector under illumination [J]. Optics Express, 2015, 23(8): 10786.
[82] [82] DORENBOS S N, REIGER E M, AKOPIAN N, et al. Superconducting single photon detectors with minimized polarization dependence [J]. Applied Physics Letters, 2008, 93(16): 161102.
[83] [83] ANANT V. Engineering the optical properties of subwavelength devices and materials [D]. Cambridge, USA: Massachusetts Institute of Technology, 2007.
[84] [84] VERMA V B, MARSILI F, HARRINGTON S, et al. A three-dimensional, polarization-insensitive superconducting nanowire avalanche photodetector [J]. Applied Physics Letters, 2012, 101(25): 251114.
[85] [85] HUANG J, ZHANG W J, YOU L X, et al. Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550nm wavelength [J]. Superconductor Science and Technology, 2017, 30(7): 074004.
[86] [86] ZHU X T, GU Ch, CHENG Y H, et al. Broadband, polarization-insensitive superconducting single-photon detectors based on waveguide-integrated ultra-narrow nanowires [C]//2015 Opto-Electronics and Communications Conference (OECC). New York, USA: IEEE, 2015: JThE.14.
[87] [87] TTH B, SZENES A, MARCZI D, et al. Polarization independent high absorption efficiency single-photon detectors based on three-dimensional integrated superconducting and plasmonic patterns [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(3): 3900309.
[88] [88] ZHANG W Y, HU P, XIAO Y, et al. High efficiency, polarization-insensitivity superconducting single photon detector [J]. Acta physica Sinica, 2021,70(18): 188501(in Chinese).
[89] [89] XU R Y, ZHENG F, QIN D F, et al. Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer [J]. Journal of Lightwave Technology, 2017, 35(21): 4707-4713.
[90] [90] GUO Q, LI H, YOU L X, et al. Single photon detector with high polarization sensitivity [J]. Scientific Reports, 2015, 5(1): 9616.
[91] [91] XU R Y, LI Y Ch, ZHENG F, et al. Demonstration of a superconducting nanowire single photon detector with an ultrahigh polarization extinction ratio over 400 [J]. Optics Express, 2018, 26(4): 3947-3955.
[92] [92] LI D Zh, JIAO R Zh. Design of a low-filling-factor and polarization-sensitive superconducting nanowire single photon detector with high detection efficiency [J]. Photonics Research, 2019, 7(8): 847-852.
[93] [93] YANG M M, ZHENG F, JIN B B, et al. An efficient and polarization-sensitive superconducting-nanowire single-photon detector with coupled asymmetric split-ring resonator-loaded cavity [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 2200604.
[94] [94] CSETE M, SZENES A, MARCZI D, et al. Plasmonic structure integrated single-photon detectors optimized to maximize polarization contrast [J]. IEEE Photonics Journal, 2017, 9(2): 4900211.
[95] [95] GUO Q, YOU L X, LI H, et al. Impact of trapezoidal cross section on polarization sensitivity of SNSPD with ultranarrow nanowire [J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 2201304.
[96] [96] SHIBATA H, FUKAO K, KIRIGANE N, et al. SNSPD with ultimate low system dark count rate using various cold filters [J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 2200504.
[97] [97] MARSILI F, NAJAFI F, DAULER E, et al. Afterpulsing and instability in supercon-ducting nanowire avalanche photodetectors [J]. Applied Physics Letters, 2012, 100(11): 112601.
[98] [98] KERMAN A J, DAULER E A, KEICHER W E, et al. Kinetic-inductance-limited reset time of superconducting nanowire photon counters [J]. Applied Physics Letters, 2006, 88(11): 111116.
[99] [99] AUTEBERT C, GRAS G, AMRI E, et al. Direct measurement of the recovery time of superconducting nanowire single-photon detectors [J]. Journal of Applied Physics, 2020, 128(7): 074504.
[100] [100] ZHAO Q, ZHANG L, JIA T, et al. Intrinsic timing jitter of superconducting nanowire single-photon detectors [J]. Applied Physics B, 2011, 104(3): 673-678.
[101] [101] CALANDRI N, ZHAO Q Y, ZHU D, et al. Superconducting nanowire detector jitter limited by detector geometry [J]. Applied Physics Letters, 2016, 109(15): 152601.
[102] [102] WU H, GU Ch, CHENG Y, et al. Vortex-crossing-induced timing jitter of superconducting nanowire single-photon detectors [J]. Applied Physics Letters, 2017, 111(6): 062603.
[103] [103] WU J J, YOU L X, CHEN S J, et al. Improving the timing jitter of a superconducting nanowire single-photon detection system [J]. Applied Optics, 2017, 56(8): 2195-2200.
[104] [104] KOZOREZOV A G, LAMBERT C, MARSILI F, et al. Fano fluctuations in superconducting-nanowire single-photon detectors [J]. Physical Review B, 2017, 96(5): 054507.
[105] [105] CHENG Y H, GU Ch, HU X L. Inhomogeneity-induced timing jitter of superconducting nanowire single-photon detectors [J]. Applied Physics Letters, 2017, 111(6): 062604.
[106] [106] ALLMARAS J P, KOZOREZOV A G, KORZH B A, et al. Intrinsic timing jitter and latency in superconducting nanowire single-photon detectors [J]. Physical Review Applied, 2019, 11(3): 034062.
[107] [107] JAHANI S, YANG L P, BUGANZA TEPOLE A, et al. Probabilistic vortex crossing criterion for superconducting nanowire single-photon detectors [J]. Journal of Applied Physics, 2020, 127(14): 143101.
[108] [108] SULTANA N. Single-photon detectors for satellite based quantum communications [D]. Waterloo, Canada: The University of Waterloo, 2020.
[109] [109] GEMMELL N R, HILLS M, BRADSHAW T, et al. A miniaturized 4K platform for superconducting infrared photon counting detectors [J]. Superconductor Science and Technology, 2017, 30(11): 11LT01.
[110] [110] KOTSUBO V, RADEBAUGH R, HENDERSHOTT P, et al. Compact 2.2K cooling system for superconducting nanowire single photon detectors [J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 500405.
[111] [111] YOU L X, QUAN J, WANG Y, et al. Superconducting nanowire single photon detection system for space applications [J]. Optics Express, 2018, 26(3): 2965-2971.
[112] [112] DANG H Zh, ZHANG T, ZHA R, et al. Development of 2-K space cryocoolers for cooling the superconducting nanowire single photon detector [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 2200904.
[113] [113] CALOZ M, KORZH B, RAMIREZ E, et al. Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors [J]. Journal of Applied Physics, 2019, 126(16): 164501.
[114] [114] ESMAEIL ZADEH I, LOS J W N, GOURGUES R B M, et al. Efficient single-photon detection with 7.7ps time resolution for photon-correlation measurements [J]. ACS Photonics, 2020, 7(7): 1780-1787.
[115] [115] TINKHAM M. Introduction to superconductivity [M]. New York, USA: Dover Publications, 2004.
[116] [116] ZHAO Q Y, SANTAVICCA D F, ZHU D, et al. A distributed electrical model for superconducting nanowire single photon detectors [J]. Applied Physics Letters, 2018, 113(8): 082601.
[117] [117] CLEM J R, BERGGREN K K. Geometry-dependent critical currents in superconducting nanocircuits [J]. Physical Review B, 2011, 84(17): 174510.
[118] [118] YANG J K W, KERMAN A J, DAULER E A, et al. Suppressed critical current in superconducting nanowire single-photon detectors with high fill-factors [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 318-322.
[119] [119] MURPHY A, SEMENOV A, KORNEEV A, et al. Three temperature regimes in superconducting photon detectors:Quantum, thermal and multiple phase-slips as generators of dark counts [J]. Scientific Reports, 2015, 5(1): 10174.
[120] [120] VEREVKIN A, ZHANG J, SOBOLEWSKI R, et al. Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range [J]. Applied Physics Letters, 2002, 80(25): 4687-4689.
[121] [121] RENEMA J J, FRUCCI G, ZHOU Z, et al. Modified detector tomography technique applied to a superconducting multiphoton nanodetector [J]. Optics Express, 2012, 20(3): 2806.
[122] [122] RENEMA J J, FRUCCI G, ZHOU Z, et al. Universal response curve for nanowire superconducting single-photon detectors [J]. Physical Review B, 2013, 87(17): 174526.
[123] [123] ENGEL A, SCHILLING A. Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector [J]. Journal of Applied Physics, 2013, 114(21): 214501.
[124] [124] ZOTOVA A N, VODOLAZOV D Y. Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach [J]. Physical Review B, 2012, 85(2): 024509.
[125] [125] VODOLAZOV D Y. Current dependence of the red boundary of superconducting single-photon detectors in the modified hot-spot model [J]. Physical Review B, 2014, 90(5): 054515.
[126] [126] ZOTOVA A N, VODOLAZOV D Y. Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model [J]. Superconductor Science and Technology, 2014, 27(12): 125001.
[127] [127] VODOLAZOV D Y, KORNEEVA Y P, SEMENOV A V, et al. Vortex-assisted mechanism of photon counting in a superconducting nanowire single-photon detector revealed by external magnetic field [J]. Physical Review B, 2015, 92(10): 104503.
[128] [128] LUSCHE R, SEMENOV A, ILIN K, et al. Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors [J]. Journal of Applied Physics, 2014, 116(4): 043906.
[129] [129] ENGEL A, AESCHBACHER A, INDERBITZIN K, et al. Tantalum nitride superconducting single-photon detectors with low cut-off energy [J]. Applied Physics Letters, 2012, 100(6): 062601.
[130] [130] RENEMA J J, WANG Q, GAUDIO R, et al. Position-dependent local detection efficiency in a nanowire superconducting single-photon detector [J]. Nano Letters, 2015, 15(7): 4541-4545.
[131] [131] BERGGREN K K, ZHAO Q Y, ABEBE N, et al. A superconducting nanowire can be modeled by using SPICE [J]. Superconductor Science and Technology, 2018, 31(5): 055010.
[132] [132] FANO U. Ionization yield of radiations. Ⅱ. the fluctuations of the number of ions [J]. Physical Review, 1947, 72(1): 26-29.
[133] [133] VODOLAZOV D Y. Minimal timing jitter in superconducting nanowire single-photon detectors [J]. Physical Review Applied, 2019, 11(1): 014016.
[134] [134] EJRNAES M, PARLATO L, ARPAIA R, et al. Observation of dark pulses in 10nm thick YBCO nanostrips presenting hysteretic current voltage characteristics [J]. Superconductor Science and Technology, 2017, 30(12): 12LT02.
[135] [135] XING X, BALASUBRAMANIAN K, BOUSCHER S, et al. Photoresponse above 85K of selective epitaxy grown high-Tc superconducting microwires [J]. Applied Physics Letters, 2020, 117(3): 032602.
[136] [136] SHIBATA H, KIRIGANE N, FUKAO K, et al. Photoresponse of a La1.85Sr0.15CuO4 nanostrip [J]. Superconductor Science and Technology, 2017, 30(7): 074001.
[137] [137] CHARPENTIER S, ARPAIA R, GAUDET J, et al. Hot spot formation in electron-doped PCCO nanobridges [J]. Physical Review B, 2016, 94(6): 060503.
[138] [138] SHIBATA H. Fabrication of a MgB2 nanowire single-photon detector using Br2-N2 dry etching [J]. Applied Physics Express, 2014, 7(10): 103101.
[139] [139] CHEREDNICHENKO S, ACHARYA N, NOVOSELOV E, et al. Low kinetic inductance superconducting MgB2 nanowires with a 130ps relaxation time for single-photon detection applications [J]. Superconductor Science and Technology, 2021, 34(4): 044001.
[140] [140] YUAN P Sh, XU Zh T, LI C, et al. Transport properties of ultrathin BaFe1.84Co0.16As2 superconducting nanowires [J]. Superconductor Science and Technology, 2018, 31(2): 025002.
[141] [141] TSUJI Y, HATANO T, KONDO K, et al. Microfabrication of NdFeAs(O,F) thin films and evaluation of the transport properties [J]. Superconductor Science and Technology, 2020, 33(7): 074001.
[142] [142] PAGANO S, MARTUCCIELLO N, ENRICO E, et al. Iron-based superconducting nanowires: Electric transport and voltage-noise properties [J]. Nanomaterials, 2020, 10(5): 862.
[143] [143] JIA X Q. Preparation, optimization and characterization of Nb based ultrathin films[D]. Nanjing: Nanjing University, 2014(in Chinese).
[144] [144] DANE A E. Reactive DC magnetron sputtering of ultrathin superconducting niobium nitride films [D]. Cambridge, USA: Massachusetts Institute of Technology, 2015.
[145] [145] ZICHI J, CHANG J, STEINHAUER S, et al. Optimizing the stoichiometry of ultrathin NbTiN films for high-performance superconducting nanowire single-photon detectors [J]. Optics Express, 2019, 27(19): 26579-26587.
[146] [146] GUILLET B, ARTHURSSON , MCHIN L, et al. Properties of ultra-thin NbN films for membrane-type THz HEB [J]. Journal of Low Temperature Physics, 2008, 151(1): 570-574.
[147] [147] GAO J R, HAJENIUS M, TICHELAAR F D, et al. Monocrystalline NbN nanofilms on a 3C-SiC/Si substrate [J]. Applied Physics Letters, 2007, 91(6): 062504.
[148] [148] DOCHEV D, DESMARIS V, PAVOLOTSKY A, et al. Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications [J]. Superconductor Science and Technology, 2011, 24(3): 035016.
[149] [149] SHIINO T, SHIBA S, SAKAI N, et al. Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer [J]. Superconductor Science and Technology, 2010, 23(4): 045004.
[150] [150] ZHANG J J, SU X, ZHANG L, et al. Improvement of the superconducting properties of NbN thin film on single-crystal silicon substrate by using a TiN buffer layer [J]. Superconductor Science and Technology, 2013, 26(4): 045010.
[151] [151] CHENG R, WRIGHT J, XING H G, et al. Epitaxial niobium nitride superconducting nanowire single-photon detectors [J]. Applied Physics Letters, 2020, 117(13): 132601.
[152] [152] BANERJEE A, BAKER L J, DOYE A, et al. Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires [J]. Superconductor Science and Technology, 2017, 30(8): 084010.
[153] [153] SHIBATA H, MARUYAMA T, AKAZAKI T, et al. Photon detection and fabrication of MgB2 nanowire [J]. Physica, 2008, C468(15): 1992-1994.
[154] [154] CHARAEV I, CHEREDNICHENKO S, REIDY K, et al. Single-photon detection in superconducting MgB2 micro-wires operating up to 20K[C/OL]//19th International Workshop on Low Temperature Detectors..https://www.nist.gov/system/files/documents/2021/07/21/1td.programv1.24 abstracts CST.pdf.
[155] [155] YANG X, YOU L X, ZHANG L, et al. Comparison of superconducting nanowire single-photon detectors made of NbTiN and NbN thin films [J]. IEEE Transactions on Applied Superconductivity, 2018, 28(1): 2200106.
[156] [156] VERMA V B, KORZH B, BUSSIRES F, et al. High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5K[J]. Applied Physics Letters, 2014, 105(12): 122601.
[157] [157] DANE A E, McCAUGHAN A N, ZHU D, et al. Bias sputtered NbN and superconducting nanowire devices [J]. Applied Physics Letters, 2017, 111(12): 122601.
[158] [158] TREECE R E, HORWITZ J S, CLAASSEN J H, et al. Pulsed laser deposition of high-quality NbN thin films [J]. Applied Physics Letters, 1994, 65(22): 2860-2862.
[159] [159] CHENG R, WANG S, TANG H X. Superconducting nanowire single-photon detectors fabricated from atomic-layer-deposited NbN [J]. Applied Physics Letters, 2019, 115(24): 241101.
[160] [160] KNEHR E, KUZMIN A, VODOLAZOV D Y, et al. Nanowire single-photon detectors made of atomic layer-deposited niobium nitride [J]. Superconductor Science and Technology, 2019, 32(12): 125007.
[161] [161] LIU X, BABCOCK J R, LANE M A, et al. Plasma-assisted MOCVD growth of superconducting NbN thin films using Nb dialkylamide and Nb alkylimide precursors [J]. Chemical Vapor Deposition, 2001, 7(1): 25-28.
[162] [162] HU X L. Efficient superconducting-nanowire single-photon detectors and their applications in quantum optics [D]. Cambridge, USA: Massachusetts Institute of Technology, 2011.
[163] [163] BANERJEE A, HEATH R M, MOROZOV D, et al. Optical properties of refractory metal based thin films [J]. Optical Materials Express, 2018, 8(8): 2072-2088.
[164] [164] BANERJEE A. Optimisation of superconducting thin film growth for next generation superconducting detector applications [D]. Glasgow: University of Glasgow, 2017.
[165] [165] ZHU X T. Waveguide integrated infrared superconducting nanowire single photon detector [D]. Tianjin:Tianjin University, 2017(in Chinese).
[166] [166] ZHANG W, JIA Q, YOU L X, et al. Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering [J]. Physical Review Applied, 2019, 12(4): 044040.
[167] [167] L C L, ZHOU H, LI H, et al. Large active area superconducting single-nanowire photon detector with a 100μm diameter [J]. Superconductor Science and Technology, 2017, 30(11): 115018.
[168] [168] CHANG J, ESMAEIL ZADEH I, LOS J W N, et al. Multimode-fiber-coupled superconducting nanowire single-photon detectors with high detection efficiency and time resolution [J]. Applied Optics, 2019, 58(36): 9803-9807.
[169] [169] BELLEI F, CARTWRIGHT A P, McCAUGHAN A N, et al. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications [J]. Optics Express, 2016, 24(4): 3248-3257.
[170] [170] CHARAEV I, SEMENOV A, DOERNER S, et al. Current dependence of the hot-spot response spectrum of superconducting single-photon detectors with different layouts [J]. Superconductor Science and Technology, 2017, 30(2): 025016.
[171] [171] HENRICH D, REHM L, DRNER S, et al. Detection efficiency of a spiral-nanowire superconducting single-photon detector [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 2200405.
[172] [172] CHARAEV I, MORIMOTO Y, DANE A, et al. Large-area microwire MoSi single-photon detectors at 1550nm wavelength [J]. Applied Physics Letters, 2020, 116(24): 242603.
[173] [173] BITAULD D, MARSILI F, GAGGERO A, et al. Nanoscale optical detector with single-photon and multiphoton sensitivity [J]. Nano Letters, 2010, 10(8): 2977-2981.
[174] [174] GU Ch, CHENG Y H, ZHU X T, et al. Fractal-inspired, polarization-insensitive superconducting nanowire single-photon detectors [C]//Advanced Photonics 2015. Boston, USA: Optical Society of American, 2015: JM3A.10.
[175] [175] FAN J A, YEO W H, SU Y, et al. Fractal design concepts for stretchable electronics [J]. Nature Communications, 2014, 5(1): 3266.
[176] [176] CHI X M, ZOU K, GU Ch, et al. Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity [J]. Optics Letters, 2018, 43(20): 5017-5020.
[177] [177] HU X L, HOLZWARTH C W, MASCIARELLI D, et al. Efficiently coupling light to superconducting nanowire single-photon detectors [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 336-340.
[178] [178] EJRNAES M, CRISTIANO R, QUARANTA O, et al. A cascade switching superconducting single photon detector [J]. Applied Physics Letters, 2007, 91(26): 262509.
[179] [179] MURPHY R, GREIN M, GUDMUNDSEN T, et al. Saturated photon detection efficiency in NbN superconducting photon detectors [C]//CLEO: QELS_Fundamental Science 2015. San Jose, California, USA: Optical Society of American, 2015: FF2A.3.
[180] [180] ZHAO Q, McCAUGHAN A N, DANE A E, et al. Eight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture [J]. Optics Express, 2014, 22(20): 24574-24581.
[181] [181] CHENG Y H, LIU H Y, GU Ch, et al. Superconducting nanowire single-photon detectors integrated with current reservoirs [C]//Conference on Lasers and Electro-Optics (2017). Washington DC, USA: Optical Society of America, 2017: JW2A.120.
[182] [182] BAEK B, STERN J A, NAM S W. Superconducting nanowire single-photon detector in an optical cavity for front-side illumination [J]. Applied Physics Letters, 2009, 95(19): 191110.
[183] [183] LI H, WANG H, YOU L X, et al. Multispectral superconducting nanowire single photon detector [J]. Optics Express, 2019, 27(4): 4727-4733.
[184] [184] HU X L, DAULER E A, MOLNAR R J, et al. Superconducting nanowire single-photon detectors integrated with optical nano-antennae [J]. Optics Express, 2011, 19(1): 17-31.
[185] [185] HEATH R M, TANNER M G, DRYSDALE T D, et al. Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors [J]. Nano Letters, 2015, 15(2): 819-822.
[186] [186] YOU L X, WU J, XU Y, et al. Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths [J]. Optics Express, 2017, 25(25): 31221-31229.
[187] [187] HOU X T, YAO N, YOU L X, et al. Ultra-broadband microfiber-coupled superconducting single-photon detector [J]. Optics Express, 2019, 27(18): 25241.
[188] [188] VETTER A, FERRARI S, RATH P, et al. Cavity-enhanced and ultrafast superconducting single-photon detectors [J]. Nano Letters, 2016, 16(11): 7085-7092.
[189] [189] KHASMINSKAYA S, PYATKOV F, SOWIK K, et al. Fully integrated quantum photonic circuit with an electrically driven light source [J]. Nature Photonics, 2016, 10(11): 727-732.
[190] [190] KANIBER M, FLASSIG F, REITHMAIER G, et al. Integrated superconducting detectors on semiconductors for quantum optics applications [J]. Applied Physics, 2016, B122(5): 115.
[191] [191] KAHL O, FERRARI S, RATH P, et al. High efficiency on-chip single-photon detection for diamond nanophotonic circuits [J]. Journal of Lightwave Technology, 2016, 34(2): 249-255.
[192] [192] WOLFF M A, VOGEL S, SPLITTHOFF L, et al. Superconducting nanowire single-photon detectors integrated with tantalum pentoxide waveguides [J]. Scientific Reports, 2020, 10(1): 17170.
[193] [193] NAJAFI F, MOWER J, HARRIS N C, et al. On-chip detection of non-classical light by scalable integration of single-photon detectors [J]. Nature Communications, 2015, 6(1): 5873.
[194] [194] PERNICE W H P, SCHUCK C, MINAEVA O, et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits [J]. Nature Communications, 2012, 3(1): 1325-1348.
[195] [195] SCHUCK C, PERNICE W H P, MINAEVA O, et al. Matrix of integrated superconducting single-photon detectors with high timing resolution [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 2201007.
[196] [196] LI J, KIRKWOOD R A, BAKER L J, et al. Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires [J]. Optics Express, 2016, 24(13): 13931-13938.
[197] [197] BUCKLEY S, CHILES J, McCAUGHAN A N, et al. All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors [J]. Applied Physics Letters, 2017, 111(14): 141101.
[198] [198] GUO X, ZOU Ch L, SCHUCK C, et al. Parametric down-conversion photon-pair source on a nanophotonic chip [J]. Light: Science & Applications, 2017, 6(5): e16249.
[199] [199] SPRENGERS J P, GAGGERO A, SAHIN D, et al. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits [J]. Applied Physics Letters, 2011, 99(18): 181110.
[200] [200] REITHMAIER G, KANIBER M, FLASSIG F, et al. On-chip generation, routing, and detection of resonance fluorescence [J]. Nano Letters, 2015, 15(8): 5208-5213.
[201] [201] TANNER M G, ALVAREZ L S E, JIANG W, et al. A superconducting nanowire single photon detector on lithium niobate [J]. Nanotechnology, 2012, 23(50): 505201.
[202] [202] RATH P, KAHL O, FERRARI S, et al. Superconducting single-photon detectors integrated with diamond nanophotonic circuits [J]. Light: Science & Applications, 2015, 4(10): e338.
[203] [203] BEYER A D, SHAW M D, MARSILI F, et al. Tungsten silicide superconducting nanowire single-photon test structures fabricated using optical lithography [J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 2200805.
[204] [204] DELACOUR C, CLAUDON J, POIZAT J P, et al. Superconducting single photon detectors made by local oxidation with an atomic force microscope [J]. Applied Physics Letters, 2007, 90(19): 191116.
[205] [205] BACHAR G, BASKIN I, SHTEMPLUCK O, et al. Superconducting nanowire single photon detectors on-fiber [J]. Applied Physics Letters, 2012, 101(26): 262601.
[206] [206] YANG M, LIU L H, NING L H, et al. Fabrication of superconducting NbN meander nanowires by nano-imprint lithography [J]. Chinese Physics B, 2016, 25(1): 017401.
[207] [207] MINAEV N V, TARKHOV M A, DUDOVA D S, et al. Fabrication of superconducting nanowire single-photon detectors by nonlinear femtosecond optical lithography [J]. Laser Physics Letters, 2018, 15(2): 026002.
[208] [208] TOOMEY E, COLANGELO M, BERGGREN K K. Investigation of ma-N 2400 series photoresist as an electron-beam resist for superconducting nanoscale devices[J]. Journal of Vacuum Science & Technology B, 2019, 37(5): 051207.
[209] [209] NAJAFI F, DANE A, BELLEI F, et al. Fabrication process yielding saturated nanowire single-photon detectors with 24-ps jitter [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(2): 3800507.
[210] [210] MIKI S, YAMASHITA T, FUJIWARA M, et al. Multichannel SNSPD system with high detection efficiency at telecommunication wavelength [J]. Optics Letters, 2010, 35(13): 2133-2135.
[211] [211] ZHANG L B, WAN Ch, GU M, et al. Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors [J]. Science Bulletin, 2015, 60(16): 1434-1438.
[212] [212] VEREVKIN A A, ZHANG J, SLYSZ W, et al. Superconducting single-photon detectors for GHz-rate free-space quantum communications[C]//Free-Space Laser Communication and Laser Imaging Ⅱ. Seattle, USA: International Society for Optics and Photonics, 2002: 447-454.
[213] [213] ALLMAN M S, VERMA V B, STEVENS M, et al. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout [J]. Applied Physics Letters, 2015, 106(19): 192601.
[214] [214] SHIBATA H, HIRAKI T, TSUCHIZAWA T, et al. A waveguide-integrated superconducting nanowire single-photon detector with a spot-size converter on a Si photonics platform [J]. Superconductor Science and Technology, 2019, 32(3): 034001.
[215] [215] MILLER A J, LITA A E, CALKINS B, et al. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent [J]. Optics Express, 2011, 19(10): 9102-9110.
[216] [216] WOLFF M A, BEUTEL F, SCHTTE J, et al. Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency [J]. Applied Physics Letters, 2021, 118(15): 154004.
[217] [217] KERMAN A J, ROSENBERG D, MOLNAR R J, et al. Readout of superconducting nanowire single-photon detectors at high count rates [J]. Journal of Applied Physics, 2013, 113(14): 144511.
[218] [218] CAHALL C, GAUTHIER D J, KIM J. Scalable cryogenic readout circuit for a superconducting nanowire single-photon detector system[J]. Review of Scientific Instruments, 2018, 89(6): 063117.
[219] [219] ROSENBERG D, KERMAN A J, MOLNAR R J, et al. High-speed and high-efficiency superconducting nanowire single photon detector array [J]. Optics Express, 2013, 21(2): 1440.
[220] [220] CAHALL C, NICOLICH K L, ISLAM N T, et al. Multi-photon detection using a conventional superconducting nanowire single-photon detector [J]. Optica, 2017, 4(12): 1534.
[221] [221] ZHU D, COLANGELO M, CHEN Ch Ch, et al. Resolving photon numbers using a superconducting nanowire with impedance-matching taper [J]. Nano Letters, 2020, 20(5): 3858-3863.
[222] [222] GREIN M E, KERMAN A J, DAULER E A, et al. An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires [C]//Advanced Photon Counting Techniques Ⅸ. Seattle, USA: International Society for Optics and Photonics, 2015: 949208.
[223] [223] ULKU A, BRUSCHINI C, MICHALET X, et al. A 512 × 512 SPAD image sensor with built-In gating for phasor based real-time siFLIM[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 25(1): 6801212.
[224] [224] DIVOCHIY A, MARSILI F, BITAULD D, et al. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths [J]. Nature Photonics, 2008, 2(5): 302-306.
[225] [225] DOERNER S, KUZMIN A, WUENSCH S, et al. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array [J]. Applied Physics Letters, 2017, 111(3): 032603.
[226] [226] ZHU D, ZHAO Q Y, CHOI H, et al. A scalable multi-photon coincidence detector based on superconducting nanowires [J]. Nature Nanotechnology, 2018, 13(7): 596-601.
[227] [227] HOFHERR M, ARNDT M, IL’IN K, et al. Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 2501205.
[228] [228] ZHAO Q Y, McCAUGHAN A, BELLEI F, et al. Superconducting-nanowire single-photon-detector linear array [J]. Applied Physics Letters, 2013, 103(14): 142602.
[229] [229] MATTIOLI F, ZHOU Z, GAGGERO A, et al. Photon-counting and analog operation of a 24-pixel photon number resolving detector based on superconducting nanowires [J]. Optics Express, 2016, 24(8): 9067-9076.
[230] [230] SINCLAIR A K, SCHROEDER E, ZHU D, et al. Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 2200704.
[231] [231] TAO X, CHEN Sh, CHEN Y J, et al. A high speed and high efficiency superconducting photon number resolving detector [J]. Superconductor Science and Technology, 2019, 32(6): 064002.
[232] [232] GAGGERO A, MARTINI F, MATTIOLI F, et al. Amplitude-multiplexed readout of single photon detectors based on superconducting nanowires [J]. Optica, 2019, 6(6): 823-828.
[233] [233] ALLMARAS J P, WOLLMAN E E, BEYER A D, et al. Demonstration of a thermally coupled row-column SNSPD imaging array [J]. Nano Letters, 2020, 20(3): 2163-2168.
[234] [234] de CEA M, WOLLMAN E E, ATABAKI A H, et al. Photonic readout of superconducting nanowire single photon counting detectors [J]. Scientific Reports, 2020, 10(1): 9470.
[235] [235] TERAI H, MIKI S, YAMASHITA T, et al. Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors [J]. Applied Physics Letters, 2010, 97(11): 112510.
[236] [236] ORTLEPP T, HOFHERR M, FRITZSCH L, et al. Demonstration of digital readout circuit for superconducting nanowire single photon detector [J]. Optics Express, 2011, 19(19): 18593.
[237] [237] HOFHERR M, WETZSTEIN O, ENGERT S, et al. Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit [J]. Optics Express, 2012, 20(27): 28683.
[238] [238] MIYAJIMA S, YABUNO M, MIKI S, et al. High-time-resolved 64-channel single-flux quantum-based address encoder integrated with a multi-pixel superconducting nanowire single-photon detector [J]. Optics Express, 2018, 26(22): 29045-29054.
[239] [239] MIYAJIMA S, YABUNO M, MIKI S, et al. Single-flux-quantum based event-driven encoder for large-pixel superconducting nanowire single-photon detector array [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 2200804.
[240] [240] ZHENG K, ZHAO Q Y, LU H Y B, et al. A superconducting binary encoder with multigate nanowire cryotrons [J]. Nano Letters, 2020, 20(5): 3553-3559.
[241] [241] ZOU K, MENG Y, XU L, et al. Superconducting nanowire photon-number-resolving detectors integrated with current reservoirs [J]. Physical Review Applied, 2020, 14(4): 044029.
[242] [242] McCAUGHAN A N. Readout architectures for superconducting nanowire single photon detectors [J]. Superconductor Science and Technology, 2018, 31(4): 040501.
[243] [243] ZHAO Q Y, JIA T, GU M, et al. Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits [J]. Optics Letters, 2014, 39(7): 1869-1872.
[244] [244] BELL M, ANTIPOV A, KARASIK B, et al. Photon number-resolved detection with sequentially connected nanowires [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 289-292.
[245] [245] CHEN Q, ZHANG B, ZHANG L B, et al. Sixteen-pixel NbN nanowire single photon detector coupled with 300-μm fiber [J]. IEEE Photonics Journal, 2020, 12(1): 6800112.
[246] [246] DAULER E A, ROBINSON B S, KERMAN A J, et al. Multi-element superconducting nanowire single-photon detector [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 279-284.
[247] [247] VERMA V B, HORANSKY R, MARSILI F, et al. A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors [J]. Applied Physics Letters, 2014, 104(5): 051115.
[248] [248] SZYPRYT P, MEEKER S R, COIFFARD G, et al. Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy [J]. Optics Express, 2017, 25(21): 25894.
[249] [249] DOERNER S, KUZMIN A, WUENSCH S, et al. Operation of superconducting nanowire single-photon detectors embedded in lumped-element resonant circuits [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(3): 2200205.
[250] [250] JAHANMIRINEJAD S, FRUCCI G, MATTIOLI F, et al. Photon-number resolving detector based on a series array of superconducting nanowires [J]. Applied Physics Letters, 2012, 101(7): 072602.
[251] [251] LIKHAREV K K. Superconductor digital electronics[J]. Physica, 2012, C482: 6-18.
[252] [252] McCAUGHAN A N, BERGGREN K K. A superconducting-nanowire three-terminal electrothermal device [J]. Nano Letters, 2014, 14(10): 5748-5753.
[253] [253] ZOU K, MENG Y, WANG Zh, et al. Superconducting nanowire multi-photon detectors enabled by current reservoirs [J]. Photonics Research, 2020, 8(4): 601-609.
[254] [254] CHEN Q, GE R, ZHANG L B, et al. Mid-infrared single photon detector with superconductor Mo0.8Si0.2 nanowire [J]. Science Bulletin, 2021, 66(10): 965-968.
[255] [255] VERMA V B, KORZH B, BUSSIèRES F, et al. High-efficiency superconducting nanowire single-photon detectors fabricated from Mo0.8Si0.2 thin-films[J]. Optics Express, 2015, 23(26): 33792-33801.
[256] [256] LI H, YANG X Y, YOU L X, et al. Improving detection efficiency of superconducting nanowire single-photon detector using multilayer antireflection coating [J]. AIP Advances, 2018, 8(11): 115022.
[257] [257] SMIRNOV K, DIVOCHIY A, VAKHTOMIN Y, et al. NbN single-photon detectors with saturated dependence of quantum efficiency [J]. Superconductor Science and Technology, IOP Publishing, 2018, 31(3): 035011.
[258] [258] EROTOKRITOU K, HEATH R M, TAYLOR G G, et al. Nano-optical photoresponse mapping of superconducting nanowires with enhanced near infrared absorption [J]. Superconductor Science and Technology, 2018, 31(12): 125012.
[259] [259] HU P, MA Y X, LI H, et al. Superconducting single-photon detector with a system efficiency of 93% operated in a 2.4K space-application-compatible cryocooler[J]. Superconductor Science and Technology, 2021, 34(7): 07LT01.
[260] [260] GENG R X, LI H, HUANG J, et al. Self aligned superconducting nanowire single photon detector [J]. Progress in Laser and Optoelectronics, 2021, 58(10): 1011022 (in Chinese).
[261] [261] SHI CRYOGENICS GROUP. RDK-101D(L) 4K Cryocooler Series[EB/OL]. [2021-05-12].https://www.shicryogenics.com/product/rdk-101dl-4k-cryocooler-series/.
[262] [262] CSIC PRIDE(NANJING) CRYOGENIC TECHNOLOGY CO LTD. Product display [EB/OL]. [2021-06-16].https://www.724pridecryogenics.com/en/prodetail.asp?id=703.
[263] [263] WANG C, LICHTENWALTER B, FRIEBEL A, et al. A closed-cycle 1K refrigeration cryostat [J]. Cryogenics, 2014, 64: 5-9.
[264] [264] ZHANG T, DANG H Zh, ZHA R, et al. Investigation of a 1.6K space cryocooler for cooling the superconducting nanowire single photon detectors [J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 500105.
[265] [265] ZHANG W J, HUANG J, ZHANG Ch J, et al. A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5GHz [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 2200204.
[266] [266] PITTALUGA M, MINDER M, LUCAMARINI M, et al. 600-km repeater-like quantum communications with dual-band stabilization [J]. Nature Photonics, 2021, 15(7): 530-535.
[267] [267] SHAINLINE J M, BUCKLEY S M, MIRIN R P, et al. Superconducting optoelectronic circuits for neuromorphic computing [J]. Physical Review Applied, 2017, 7(3): 034013.
[268] [268] SCHWARTZ M, SCHMIDT E, RENGSTL U, et al. Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor-superconductor platform [J]. Nano Letters, 2018, 18(11): 6892-6897.
[269] [269] GOBBY C, YUAN Z L, SHIELDS A J. Quantum key distribution over 122km of standard telecom fiber [J]. Applied Physics Letters, 2004, 84(19): 3762-3764.
[270] [270] TAKESUE H, NAM S W, ZHANG Q, et al. Quantum key distribution over a 40dB channel loss using superconducting single-photon detectors [J]. Nature Photonics, 2007, 1(6): 343-348.
[271] [271] HE Y, DING X, SU Z E, et al. Time-bin-encoded boson sampling with a single-photon device [J]. Physical Review Letters, 2017, 118(19): 190501.
[272] [272] WANG H, LI W, JIANG X, et al. Toward scalable boson sampling with photon loss [J]. Physical Review Letters, 2018, 120(23): 230502.
[273] [273] WANG H, QIN J, DING X, et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014 dimensional Hilbert space [J]. Physical Review Letters, 2019, 123(25): 250503.
[274] [274] LEIBFRIED D, BLATT R, MONROE C, et al. Quantum dynamics of single trapped ions [J]. Reviews of Modern Physics, 2003, 75(1): 281-324.
[275] [275] CRAIN S, CAHALL C, VRIJSEN G, et al. High-speed low-crosstalk detection of a 171Yb+ qubit using superconducting nanowire single photon detectors [J]. Communications Physics, 2019, 2(1): 97-103.
[276] [276] TODARO S L, VERMA V B, McCORMICK K C, et al. State readout of a trapped ion qubit using a trap-integrated superconducting photon detector [J]. Physical Review Letters, 2021, 126(1): 010501.
[277] [277] ELSINGER L, GOURGUES R, ESMAEIL ZADEH I, et al. Integration of colloidal PbS/CdS quantum dots with plasmonic antennas and superconducting detectors on a silicon nitride photonic platform [J]. Nano Letters, 2019, 19(8): 5452-5458.
[278] [278] SCHUCK C, GUO X, FAN L R, et al. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip [J]. Nature Communications, 2016, 7(1): 10352.
[279] [279] WARBURTON R E, McCARTHY A, WALLACE A M, et al. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550nm wavelength [J]. Optics Letters, 2007, 32(15): 2266-2268.
[280] [280] XUE L, LI Zh L, ZHANG L B, et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064nm wavelength [J]. Optics Letters, 2016, 41(16): 3848-3851.
[281] [281] TANG R F, LI Zh L, LI Y Q, et al. Light curve measurements with a superconducting nanowire single-photon detector [J]. Optics Letters, 2018, 43(21): 5488-5491.
[282] [282] HU J H, ZHAO Q Y, ZHANG X P, et al. Photon-counting optical time-domain reflectometry using a superconducting nanowire single-photon detector [J]. Journal of Lightwave Technology, 2012, 30(16): 2583-2588.
[283] [283] SCHUCK C, PERNICE W H P, MA X, et al. Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors [J]. Applied Physics Letters, 2013, 102(19): 191104.
[284] [284] ZHAO Q Y, XIA L, WAN Ch, et al. Long-haul and high-resolution optical time domain reflectometry using superconducting nanowire single-photon detectors [J]. Scientific Reports, 2015, 5: 10441.
[285] [285] YAMASHITA T, LIU D, MIKI S, et al. Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector [J]. Optics Express, 2014, 22(23): 28783-28789.
[286] [286] AL-KHUZHEYRI R, DADA A C, HUWER J, et al. Resonance fluorescence from a telecom-wavelength quantum dot [J]. Applied Physics Letters, 2016, 109(16): 163104.
[287] [287] SCHLL E, HANSCHKE L, SCHWEICKERT L, et al. Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability [J]. Nano Letters, 2019, 19(4): 2404-2410.
[288] [288] TOOMEY E, ZHAO Q Y, McCAUGHAN A N, et al. Frequency pulling and mixing of relaxation oscillations in superconducting nanowires [J]. Physical Review Applied, 2018, 9(6): 064021.
[289] [289] McCAUGHAN A N, VERMA V B, BUCKLEY S M, et al. A superconducting thermal switch with ultrahigh impedance for interfacing superconductors to semiconductors [J]. Nature Electronics, 2019, 2(10): 451-456.
[290] [290] ROSTICHER M, LADAN F R, MANEVAL J P, et al. A high efficiency superconducting nanowire single electron detector [J]. Applied Physics Letters, 2010, 97(18): 183106.
[291] [291] SCLAFANI M, MARKSTEINER M, KEIR F M, et al. Sensitivity of a superconducting nanowire detector for single ions at low energy [J]. Nanotechnology, 2012, 23(6): 065501.
[292] [292] MARSILI F, BELLEI F, NAJAFI F, et al. Efficient single photon detection from 500nm to 5μm wavelength [J]. Nano Letters, 2012, 12(9): 4799-4804.
[293] [293] CAO H S, TER BRAKE H J M. Progress in and outlook for cryogenic microcooling [J]. Physical Review Applied, 2020, 14(4): 044044.
Get Citation
Copy Citation Text
HU Xiaolong, HU Nan, ZOU Kai, MENG Yun, XU Liang, FENG Yifan. Twenty-year research and development of SNSPDs:Review and prospects[J]. Laser Technology, 2022, 46(1): 1
Category:
Received: Jun. 25, 2021
Accepted: --
Published Online: Feb. 28, 2022
The Author Email: HU Xiaolong (xiaolonghu@tju.edu.cn)