Acta Optica Sinica, Volume. 43, Issue 13, 1312003(2023)
Analysis of Statistical Uncertainty of Optical Frequency Measurement Due to Measurement Dead Time of Hydrogen Maser
[1] Brewer S M, Chen J S, Hankin A M et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10-18[J]. Physical Review Letters, 123, 033201(2019).
[2] Oelker E, Hutson R B, Kennedy C J et al. Demonstration of 4.8×10-17 stability at 1 s for two independent optical clocks[J]. Nature Photonics, 13, 714-719(2019).
[3] Sanner C, Huntemann N, Lange R et al. Optical clock comparison for Lorentz symmetry testing[J]. Nature, 567, 204-208(2019).
[4] Bothwell T, Kennedy C J, Aeppli A et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 602, 420-424(2022).
[5] Godun R M, Nisbet-Jones P B R, Jones J M et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants[J]. Physical Review Letters, 113, 210801(2014).
[6] Huntemann N, Lipphardt B, Tamm C et al. Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks[J]. Physical Review Letters, 113, 210802(2014).
[7] Beloy K, Bodine M I, Bothwell T et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network[J]. Nature, 591, 564-569(2021).
[8] Yin M J, Wang T, Lu X T et al. Rabi spectroscopy and sensitivity of a floquet engineered optical lattice clock[J]. Chinese Physics Letters, 38, 073201(2021).
[9] Lu X T, Wang T, Li T et al. Doubly modulated optical lattice clock: interference and topology[J]. Physical Review Letters, 127, 033601(2021).
[10] Yin M J, Lu X T, Li T et al. Floquet engineering Hz-level Rabi spectra in shallow optical lattice clock[J]. Physical Review Letters, 128, 073603(2022).
[11] Grotti J, Koller S, Vogt S et al. Geodesy and metrology with a transportable optical clock[J]. Nature Physics, 14, 437-441(2018).
[12] Bloom B J, Nicholson T L, Williams J R et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 506, 71-75(2014).
[13] Nicholson T L, Campbell S L, Hutson R B et al. Systematic evaluation of an atomic clock at 2×10-18 total uncertainty[J]. Nature Communications, 6, 1-8(2015).
[14] Bothwell T, Kedar D, Oelker E et al. JILA SrI optical lattice clock with uncertainty of 2.0×10-18[J]. Metrologia, 56, 065004(2019).
[15] McGrew W F, Zhang X, Fasano R J et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 564, 87-90(2018).
[16] Ushijima I, Takamoto M, Das M et al. Cryogenic optical lattice clocks[J]. Nature Photonics, 9, 185-189(2015).
[17] Huntemann N, Sanner C, Lipphardt B et al. Single-ion atomic clock with 3×10-18 systematic uncertainty[J]. Physical Review Letters, 116, 063001(2016).
[18] Lu B K, Sun Z, Yang T et al. Improved evaluation of BBR and collisional frequency shifts of NIM-Sr2 with 7.2×10-18 total uncertainty[J]. Chinese Physics Letters, 39, 080601(2022).
[19] Le Targat R, Lorini L, Le Coq Y et al. Experimental realization of an optical second with strontium lattice clocks[J]. Nature Communications, 4, 1-9(2013).
[20] Schwarz R, Dörscher S, Al-Masoudi A et al. Long term measurement of the 87Sr clock frequency at the limit of primary Cs clocks[J]. Physical Review Research, 2, 033242(2020).
[21] Riehle F, Gill P, Arias F et al. The CIPM list of recommended frequency standard values: guidelines and procedures[J]. Metrologia, 55, 188-200(2018).
[23] Matsubara K, Hachisu H, Li Y et al. Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement[J]. Optics Express, 20, 22034-22041(2012).
[24] Yamaguchi A, Fujieda M, Kumagai M et al. Direct comparison of distant optical lattice clocks at the 10-16 uncertainty[J]. Applied Physics Express, 4, 082203(2011).
[25] Lin Y G, Wang Q, Meng F et al. A 87Sr optical lattice clock with 2.9×10-17 uncertainty and its absolute frequency measurement[J]. Metrologia, 58, 035010(2021).
[26] Hobson R, Bowden W, Vianello A et al. A strontium optical lattice clock with 1×10-17 uncertainty and measurement of its absolute frequency[J]. Metrologia, 57, 065026(2020).
[27] Kim H, Heo M S, Park C Y et al. Absolute frequency measurement of the 171Yb optical lattice clock at KRISS using TAI for over a year[J]. Metrologia, 58, 055007(2021).
[28] Luo L M, Qiao H, Ai D et al. Absolute frequency measurement of an Yb optical clock at the 10-16 level using International Atomic Time[J]. Metrologia, 57, 065017(2020).
[29] Mukaiyama T, Katori H, Ido T et al. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature[J]. Physical Review Letters, 90, 113002(2003).
[30] Falke S, Lemke N, Grebing C et al. A strontium lattice clock with 3×10-17 inaccuracy and its frequency[J]. New Journal of Physics, 16, 073023(2014).
[31] Lu X T, Guo F, Wang Y B et al. Absolute frequency measurement of the 87Sr optical lattice clock at NTSC using international atomic time[J]. Metrologia, 60, 015008(2023).
[32] Falke S, Misera M, Sterr U et al. Delivering pulsed and phase stable light to atoms of an optical clock[J]. Applied Physics B, 107, 301-311(2012).
[33] Lin Y G, Fang Z J. Strontium optical lattice clock[J]. Acta Physica Sinica, 67, 160604(2018).
[34] Hachisu H, Fujieda M, Kumagai M et al. Absolute frequency measurement at 10-16 level based on the international atomic time[J]. Journal of Physics: Conference Series, 723, 012042(2016).
[35] Hachisu H, Petit G, Nakagawa F et al. SI-traceable measurement of an optical frequency at the low 10-16 level without a local primary standard[J]. Optics Express, 25, 8511-8523(2017).
Get Citation
Copy Citation Text
Yingxin Chen, Xiaotong Lu, Hong Chang. Analysis of Statistical Uncertainty of Optical Frequency Measurement Due to Measurement Dead Time of Hydrogen Maser[J]. Acta Optica Sinica, 2023, 43(13): 1312003
Category: Instrumentation, Measurement and Metrology
Received: Jan. 5, 2023
Accepted: Mar. 6, 2023
Published Online: Jul. 12, 2023
The Author Email: Lu Xiaotong (changhong@ntsc.ac.cn), Chang Hong (luxiaotong@ntsc.ac.cn)