Journal of Infrared and Millimeter Waves, Volume. 42, Issue 1, 78(2023)
Effects of incident spectrum and radiative power intensity on the performance of GaSb thermophotovoltaic cell
[1] TAN Xian-Dong, LIU Jun, XU Zhi-Cheng et al. Power supply and demand balance during the 14th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric Power, 54, 1-6(2021).
[2] CHENG Zi-Ming, HAN Han, WANG Fu-Qiang et al. Efficient radiative cooling coating with biomimetic human skin wrinkle structure[J]. Nano Energy, 89, 106377(2021).
[3] WANG Fu-Qiang, ZHANG Xin-Ping, DONG Yan et al. Progress in radiative transfer in porous medium: A review from macro scale to pore scale with experimental test[J]. Applied Thermal Engineering, 210, 118331(2022).
[4] LIANG Hua-Xu, SU Rong-Hua, HUANG Wei-Ming et al. A novel spectral beam splitting photovoltaic/thermal hybrid system based on semi-transparent solar cell with serrated groove structure for co-generation of electricity and high-grade thermal energy[J]. Energy Conversion and Management, 252, 115049(2022).
[5] BURGER T, SEMPERE C, ROY-LAYINDE B et al. Present efficiencies and future opportunities in thermophotovoltaics[J]. Joule, 4, 1660-1680(2020).
[6] BASU S, CHEN Yu-Bin, ZHANG Zhuo-Min. Microscale radiation in thermophotovoltaic devices-A review[J]. International journal of energy research, 31, 689-716(2007).
[7] FRAAS L M, AVERY J E, HUANG Han-Xiang. Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells[J]. Semiconductor Science & Technology, 18, 247(2003).
[8] VICTORIA M, ASKINS S, HERRERO R et al. Assessment of the optical efficiency of a primary lens to be used in a CPV system[J]. Solar Energy, 134, 406-415(2016).
[9] HUSAIN A A F, HASAN W Z W, SHAFIE S et al. A review of transparent solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 94, 779-791(2018).
[10] YANG Zhi-Min, PENG Wan-Li, LIAO Tian-Ru et al. An efficient method exploiting the waste heat from a direct carbon fuel cell by means of a thermophotovoltaic cell[J]. Energy Conversion and Management, 149, 424-431(2017).
[11] ALINA L, KEVIN L S, MYLES A S et al. Thermophotovoltaic efficiency of 40[J]. Nature, 604, 287-291(2022).
[12] LI Xiao-Feng, HYLTON N P, GIANNINI V et al. Multi‐dimensional modeling of solar cells with electromagnetic and carrier transport calculations[J]. Progress in Photovoltaics: Research and Applications, 21, 109-120(2013).
[13] SHANG Ai-Xue, LI Xiao-Feng. Photovoltaic devices: opto-electro-thermal physics and modeling[J]. Advanced Materials, 29, 1603492(2017).
[14] CALLAHAN W A, FENG Du-Dong, ZHANG Zhuo-Min et al. Coupled charge and radiation transport processes in thermophotovoltaic and thermoradiative cells[J]. Physical Review Applied, 15, 054035(2021).
[15] GARNETT E, YANG Pei-Dong. Light trapping in silicon nanowire solar cells[J]. Nano Letters, 10, 1082-1087(2010).
[16] DEINEGA A, JOHN S. Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells[J]. Computer Physics Communications, 183, 2128-2135(2012).
[17] DEINEGA A, JOHN S. Solar power conversion efficiency in modulated silicon nanowire photonic crystals[J]. Journal of Applied Physics, 112, 770-777(2012).
[18] TOURNET J, PAROLA S, VAUTHELIN A et al. GaSb-based solar cells for multi-junction integration on Si substrates[J]. Solar Energy Materials and Solar Cells, 191, 444-450(2018).
[19] DEMEO D, SHEMELYA C, DOWNS C et al. GaSb thermophotovoltaic cells grown on gaas substrate using the interfacial misfit array method[J]. Journal of Electronic Materials, 43, 902-908(2014).
[20] CEDERBERG J G, HAFICH M, BIEFELD R M et al. The preparation of InGa(As)Sb and Al(Ga)AsSb films and diodes on GaSb for thermophotovoltaic applications using metal-organic chemical vapor deposition[J]. Journal of Crystal Growth, 248, 289-295(2003).
[21] GAMEL M M A, LEE H J, KER P J et al. A Review on Thermophotovoltaic Cell and Its Applications in Energy Conversion: Issues and Recommendations[J]. Materials, 14, 4944(2021).
[22] MARTIN D, ALGORA C. Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling[J]. Semiconductor Science and Technology, 19, 1040-1052(2004).
[23] BLANDRE E, CHAPUIS P O, VAILLON R. High-injection effects in near-field thermophotovoltaic devices[J]. Scientific Reports, 7, 15860(2017).
[24] NI Qing, SABBAGHI P, WANG Li-Ping. Optoelectronic analysis of spectrally selective nanophotonic metafilm cell for thermophotovoltaic energy conversion[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 268, 107625(2021).
[25] KHVOSTIKOV V P, GRACHEV Y V, VLASOV A S et al. Reducing optical losses in thermophotovoltaic systems[J]. Journal of Power Sources, 501, 229972(2021).
[26] LI Dian-Hong, XUAN Yi-Min. Design and evaluation of a hybrid solar thermphotovoltaic-thermoelectric system[J]. Solar Energy, 231, 1025-1036(2022).
[27] UTLU Z, NAL B S. Performance evaluation of thermophotovoltaic GaSb cell technology in high temperature waste heat[J]. IOP Conference Series: Materials Science and Engineering, 307, 012075(2018).
[28] KRUPKE W F, BEACH R J, PAYNE S A et al. DPAL: A new class of lasers for cw power beaming at ideal photovoltaic cell wavelengths[J]. Beamed Energy Propulsion, 702, 367-377(2004).
[29] S OH, CHO J W, JEONG D et al. High-Temperature Carbonized Ceria Thermophotovoltaic Emitter beyond Tungsten[J]. ACS Applied Materials & Interfaces, 13, 42724-42731(2021).
[30] WANG Dong, YANG Guan-Dong, LIU Fu-De[M]. Solar photovoltaics working principles and applications, 34-41(2014).
[31] WACHUTKA G K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 9, 1141-1149(1990).
[32] DONALD L C[M]. Fundamentals of thermophotovoltaic energy conversion, 313-315(2007).
[33] LIU En-Ke, LUO Bing-Sheng, LUO Jin-Sheng[M]. Semiconductor Physics (7th Edition), 158-159(2008).
[34] TANG Liang-Liang, FRAAS L M, LIU Zhu-Ming et al. N-type vapor diffusion for the fabrication of GaSb thermophotovoltaic cells to increase the quantum efficiency in the long wavelength range[J]. Solar Energy Materials & Solar Cells, 194, 137-141(2019).
[35] LEVINSHTEIN M, RUMYANTSEV S, SHUR M[M]. Handbook series on Semiconductor Parameters, 129-130(2000).
[36] TANG Liang-Liang, FRAAS L M, LIU Zhu-Ming et al. Doping Optimization in Zn-Diffused GaSb Thermophotovoltaic Cells to Increase the Quantum Efficiency in the Long Wave Range[J]. IEEE Transactions on Electron Devices, 64, 5012-5018(2017).
[37] DJURIŠIĆ A B, LI E Herbert, RAKIĆ D et al. Majewski. Modeling the optical properties of AlSb, GaSb, and InSb[J]. Applied Physics, 70, 29-32(2000).
[38] STOLLWERCK G, SULIMA O V, Bett A W. Characterization and simulation of GaSb device-related properties[J]. IEEE Transactions on Electron Devices, 47, 448-457(2000).
Get Citation
Copy Citation Text
Xin WANG, Xue CHEN, Hong-Yu PAN, Xiu-Li LIU, Xin-Lin XIA. Effects of incident spectrum and radiative power intensity on the performance of GaSb thermophotovoltaic cell[J]. Journal of Infrared and Millimeter Waves, 2023, 42(1): 78
Category: Research Articles
Received: May. 10, 2022
Accepted: --
Published Online: Feb. 23, 2023
The Author Email: Xue CHEN (hit_chenxue@hit.edu.cn)