Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 1, 53(2021)

Triazine-based electron-transport material for stable phosphorescent organic light-emitting diodes

CHEN Ling-ling1、*, WANG Lin-ye1, XIAO Shu1, ZOU Jian-hua2, ZHU Xu-hui1, and MA Dong-ge1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(22)

    [1] [1] TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J].Applied Physics Letters, 1987, 51(12): 913-915.

    [2] [2] FINK R, FRENZ C, THELAKKAT M, et al. Synthesis and characterization of aromatic poly(1, 3, 5-triazine-ether)s for electroluminescent devices [J]. Macromolecules, 1997, 30(26): 8177-8181.

    [3] [3] LI Z Y, KOU K C, ZHANG J Q, et al. Solubility, electrochemical behavior and thermal stability of polyimides synthesized from 1, 3, 5-triazine-based diamine [J]. Journal of Materials Science: Materials in Electronics, 2017, 28(8): 6079-6087.

    [4] [4] JIN G, LIU J Z, ZOU J H, et al. Appending triphenyltriazine to 1, 10-phenanthroline: a robust electron-transport material for stable organic light-emitting diodes [J]. Science Bulletin, 2018, 63(7): 446-451.

    [5] [5] CHEN L L, PENG L, WANG L Y,et al. Molecular engineering of an electron-transport triarylphosphine oxide-triazine conjugate toward high-performance phosphorescent organic light-emitting diodes with remarkable stability [J]. Science China Chemistry, 2020, 63(7): 904-910.

    [6] [6] LI Y Q, FUNG M K, XIE Z, et al. An efficient pure blue organic light-emitting device with low driving voltages [J]. Advanced Materials, 2002, 14(18): 1317-1321.

    [7] [7] SHI J M, TANG C W. Anthracene derivatives for stable blue-emitting organic electroluminescence devices [J]. Applied Physics Letters, 2002, 80(17): 3201-3203.

    [8] [8] LEE M T, CHEN H H, LIAO C H, et al. Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9, 10-di(2-naphthyl)anthracene [J]. Applied Physics Letters, 2004, 85(15): 3301-3303.

    [9] [9] TSE S C, SO S K, YEUNG M Y, et al. The role of charge-transfer integral in determining and engineering the carrier mobilities of 9, 10-di(2-naphthyl)anthracene compounds [J]. Chemical Physics Letters, 2006, 422(4/6): 354-357.

    [10] [10] PENG L, YAO J W, WANG M, et al. Efficient soluble deep blue electroluminescent dianthracenylphenylene emitters with CIE y (y≤0.08) based on triplet-triplet annihilation [J]. Science Bulletin, 2019, 64(11): 774-781.

    [11] [11] SUN Y D, DUAN L, ZHANG D Q, et al. A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes [J]. Advanced Functional Materials, 2011, 21(10): 1881-1886.

    [12] [12] CHEN N N, TAN W Y, LIU J Z, et al. Triarylphosphine oxide-phenanthroline molecular conjugate as a promising doped electron-transport layer for organic light-emitting diodes [J]. Organic Electronics, 2017, 48: 271-275.

    [13] [13] GAO Z Q, MI B X, CHEN C H, et al. High-efficiency deep blue host for organic light-emitting devices [J]. Applied Physics Letters, 2007, 90(12): 123506.

    [14] [14] ZHAO L, ZOU J H, HUANG J, et al. Asymmetrically 9, 10-disubstituted anthracenes as soluble and stable blue electroluminescent molecular glasses [J]. Organic Electronics, 2008, 9(5): 649-655.

    [15] [15] MASUDA T, SHIOMI T, MITSUYA M. Organic electroluminescent element and electronic device: WO 2018/139662 A1 [P]. 2018-08-02.

    [16] [16] FLEISSNER A, STEGMAIER K, MELZER C,et al. Residual halide groups in gilch-polymerized poly(p-phenylene-vinylene) and their impact on performance and lifetime of organic light-emitting diodes [J]. Chemistry of Materials, 2009, 21(18): 4288-4298.

    [17] [17] WILSON G J, LAUNIKONIS A, SASSE W H F, et al. Excited-state processes in ruthenium(II) bipyridine complexes containing covalently bound arenes [J]. The Journal of Physical Chemistry A, 1997, 101(27): 4860-4866.

    [18] [18] PARKER C A, HATCHARD C G. Delayed fluorescence from solutions of anthracene and phenanthrene [J].Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1962, 269(1339): 574-584.

    [19] [19] LUO Y J, LU Z Y, HUANG Y. Triplet fusion delayed fluorescence materials for OLEDs [J].Chinese Chemical Letters, 2016, 27(8): 1223-1230.

    [20] [20] ZHANG D D, SONG X Z, LI H Y, et al. High-performance fluorescent organic light-emitting diodes utilizing an asymmetric anthracene derivative as an electron-transporting material [J]. Advanced Materials, 2018, 30(26): 1707590.

    [21] [21] KIDO J, HAYASE H, HONGAWA K, et al. Bright red light-emitting organic electroluminescent devices having a europium complex as an emitter [J]. Applied Physics Letters, 1994, 65(17): 2124-2126.

    [22] [22] FRY C, RACINE B, VAUFREY D, et al. Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes [J]. Applied Physics Letters, 2005, 87(21): 213502.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Ling-ling, WANG Lin-ye, XIAO Shu, ZOU Jian-hua, ZHU Xu-hui, MA Dong-ge. Triazine-based electron-transport material for stable phosphorescent organic light-emitting diodes[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(1): 53

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 14, 2020

    Accepted: --

    Published Online: Aug. 22, 2021

    The Author Email: CHEN Ling-ling (chenlingling0301@126.com)

    DOI:10.37188/cjlcd.2020-0237

    Topics