Acta Optica Sinica, Volume. 40, Issue 7, 0710001(2020)

Image Noise Reduction in Computed Tomography with Non-Local Means Algorithm Based on Adaptive Filtering Coefficients

Yufang Cai1,2、*, Taoyan Chen1,2, Jue Wang1,2, and Gongjie Yao1,2
Author Affiliations
  • 1Engineering Research Center of Industrial CT Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 2College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • show less
    Figures & Tables(14)
    Relationship diagram of similar window and search window of NLM algorithm
    Structural tensor decomposition. (a) Original image; (b) schematic of structure tensor
    Flowchart of ST-NLM algorithm
    Gaussian noise simulated image and local magnification of filtering results at different noise levels. (a) Simulated image; (b) σ=1; (c) σ=4; (d) σ=5; (e) σ=12
    CT image of spatial resolution testing card. (a) Original image; (b) NLM; (c) method in Ref. [12]; (d) ST-NLM
    Gray curves obtained by different filtering methods
    Typical CT slices of insect 1. (a) Original image; (b) locally enlarged image; (c) NLM; (d) method in Ref. [12]; (e) ST-NLM
    CT image of the 520th slice of insect 1. (a) Original image; (b) locally enlarged image; (c) NLM; (d) method in Ref. [12]; (e) ST-NLM
    CT image of the 434th slice of insect 2. (a) Original image; (b) locally enlarged image; (c) NLM; (d) method in Ref. [12]; (e) ST-NLM
    • Table 1. Quantitative evaluation of SSIM and PSNR by different methods

      View table

      Table 1. Quantitative evaluation of SSIM and PSNR by different methods

      Evaluation parameterσNoisy imageNLMMethod in Ref. [12]ST-NLM
      10.27710.94440.95530.9556
      SSIM40.19870.84720.90250.9101
      50.16290.79970.82410.8663
      120.11500.62760.67220.7309
      123.5430.8632.0436.39
      RPSN /dB421.8430.1131.1733.35
      518.6428.0329.0629.67
      1215.3124.1925.0125.08
    • Table 2. CT system parameters for experiment

      View table

      Table 2. CT system parameters for experiment

      ObjectCT systemX-ray energy /keVDetector size /mmExposure time /msViews of projection
      Spatial resolution testing cardLinear array40001.500202048
      Insect 1Planer array1500.200500500
      Insect 2Planer array600.0751000500
    • Table 3. Experimental parameters of different images

      View table

      Table 3. Experimental parameters of different images

      ImageImage sizeSimilar window sizeSearch window sizeσ
      Fig. 5336×2833×37×70.34
      768×10243×37×70.11
      Fig. 7768×10243×37×70.14
      768×10243×37×70.12
      768×10243×37×70.10
      Fig. 8768×10243×37×70.15
      Fig. 91200×12003×37×70.25
    • Table 4. Index of image sharpness

      View table

      Table 4. Index of image sharpness

      ImageEvaluation parameterSlice No.NLMMethod in Ref. [12]ST-NLM
      340th0.08680.09410.0995
      Fig. 7Global Tenengrad592th0.11270.12090.1416
      636th0.10630.11350.1355
      710th0.09060.09780.0966
      Fig. 8Global Tenengrad520th0.08820.09020.1021
      Fig. 9Global Tenengrad434th0.09110.09440.1113
    • Table 5. Comparison of operating time among various filtering algorithmss

      View table

      Table 5. Comparison of operating time among various filtering algorithmss

      ImageImage sizeNLMNLM integrating image accelerationMethod in Ref. [12]ST-NLM
      Fig. 5336×2833.180.533.212.05
      Fig. 8768×102420.101.7821.108.06
      Fig. 91200×120037.903.8638.3015.30
    Tools

    Get Citation

    Copy Citation Text

    Yufang Cai, Taoyan Chen, Jue Wang, Gongjie Yao. Image Noise Reduction in Computed Tomography with Non-Local Means Algorithm Based on Adaptive Filtering Coefficients[J]. Acta Optica Sinica, 2020, 40(7): 0710001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Oct. 16, 2019

    Accepted: Dec. 16, 2019

    Published Online: Apr. 15, 2020

    The Author Email: Cai Yufang (aacai@163.com)

    DOI:10.3788/AOS202040.0710001

    Topics