Spectroscopy and Spectral Analysis, Volume. 42, Issue 1, 229(2022)

Research on Inversion of Water Conservation Capacity of Forest Litter in Yarlung Zangbo Grand Canyon Based on Spectral Features

Qian-qian LONG1、*, Ren-hao ZHOU2、2;, De-peng YUE1、1;, Teng NIU1、1;, Xue-qing MAO1、1;, Peng-chong WANG3、3;, and Qiang YU1、1; *;
Author Affiliations
  • 11. Beijing Key Research Office of Precision Forestry, Beijing Forestry University, Beijing 100083, China
  • 22. Cyberspace Security Academy, Chengdu University of Information Technology, Chengdu 610200, China
  • 33. Beijing Linmiao Ecological Environment Technology Co., Ltd., Beijing 100085, China
  • show less
    Figures & Tables(11)
    Surface profile and sampling points distribution in the study area
    Spectral reflectance of leaves
    First derivative of spectrum(a): The visible light band; (b): The red-edged band
    Water conservation and distribution of forest litter in Grand Canyon
    Precision evaluation of water conservation capacity for different species litter layer in model(a): Pinus densata; (b): Picea Linzhi; (c): Quercusaqui folioides
    • Table 1. Characteristic spectral parameters and calculation method

      View table
      View in Article

      Table 1. Characteristic spectral parameters and calculation method

      植被指数计算方法
      NDVIρNIR-ρRρNIR+ρR
      EVI2.5×ρNIR-ρRρNIR+(6×ρR-7.5×ρB)+1
      VOGρRE2ρRE1
      LCIρNIR-ρRE1ρNIR-ρR
      GVMI(ρNIR+0.1)-(ρMIR+0.02)(ρNIR+0.1)+(ρMIR+0.02)
      NRIρGρR
      PWPρGρG-ρR
      PSRIρR-ρBρRE2
    • Table 2. Parameter of blue edge, yellow edge and red edge

      View table
      View in Article

      Table 2. Parameter of blue edge, yellow edge and red edge

      树种蓝边位
      置/nm
      黄边位
      置/nm
      红边位
      置/nm
      红边
      斜率
      红边峰
      值面积
      高山松5245677210.009 50.404 1
      林芝云杉5225727170.006 30.307 6
      川滇高山栎5245687210.011 90.523 0
    • Table 3. Litter Stock volume and natural water content

      View table
      View in Article

      Table 3. Litter Stock volume and natural water content

      树种蓄积量自然
      含水
      率/%
      未分解层
      占比/%
      半分解层
      占比/%
      总量
      /(t·ha-1)
      高山松53.6846.3217.5330.84
      林芝云杉29.1870.8226.4669.06
      川滇高山栎41.1758.8325.1462.89
    • Table 4. Water holding capacity of litter

      View table
      View in Article

      Table 4. Water holding capacity of litter

      树种最大持水
      率/%
      最大持水量
      /(t·ha-1)
      有效拦蓄
      率/%
      有效拦蓄量
      /(t·ha-1)
      高山松253.1944.38184.3732.32
      林芝云杉296.2578.39182.7548.36
      川滇高山栎257.6164.76156.0839.24
    • Table 5. Person correlation coefficient analysis

      View table
      View in Article

      Table 5. Person correlation coefficient analysis

      植被指数Person相关系数
      高山松林芝云杉川滇高山栎
      NDVI0.481*0.2770.204
      EVI0.2880.331*0.231
      VOG0.3450.312*0.358*
      GVMI0.507*0.546**0.407*
      LCI0.396*0.2350.375*
      NRI0.1940.363*0.289
      PWP-0.623**-0.437*-0.565**
      PSRI-0.519**-0.544*-0.442**
    • Table 6. Inversion model of water conservation in litter layer of different tree species

      View table
      View in Article

      Table 6. Inversion model of water conservation in litter layer of different tree species

      植被类型反演模型R2
      高山松WL=-13.78PWP**-10.69PSRI*+8.24GVMI*+5.51NDVI*+2.82LCI*+69.030.691
      林芝云杉WL=21.43GVMI**-15.77PWP**-10.81PSRI*+9.38NRI*+7.88EVI*+2.51VOG*+20.140.779
      川滇高山栎WL=-15.16PWP**-12.73PSRI*+12.62GVMI*+9.64LCI*+6.79VOG*+72.110.743
    Tools

    Get Citation

    Copy Citation Text

    Qian-qian LONG, Ren-hao ZHOU, De-peng YUE, Teng NIU, Xue-qing MAO, Peng-chong WANG, Qiang YU. Research on Inversion of Water Conservation Capacity of Forest Litter in Yarlung Zangbo Grand Canyon Based on Spectral Features[J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 229

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 13, 2021

    Accepted: --

    Published Online: Mar. 31, 2022

    The Author Email: Qian-qian LONG (longqianqian@bjfu.edu.cn)

    DOI:10.3964/j.issn.1000-0593(2022)01-0229-07

    Topics